6,989 research outputs found

    Advancing the Applicability of Reinforcement Learning to Autonomous Control

    Get PDF
    ï»żMit dateneffizientem Reinforcement Learning (RL) konnten beeindruckendeErgebnisse erzielt werden, z.B. fĂŒr die Regelung von Gasturbinen. In derPraxis erfordert die Anwendung von RL jedoch noch viel manuelle Arbeit, wasbisher RL fĂŒr die autonome Regelung untauglich erscheinen ließ. Dievorliegende Arbeit adressiert einige der verbleibenden Probleme, insbesonderein Bezug auf die ZuverlĂ€ssigkeit der Policy-Erstellung. Es werden zunĂ€chst RL-Probleme mit diskreten Zustands- und AktionsrĂ€umenbetrachtet. FĂŒr solche Probleme wird hĂ€ufig ein MDP aus BeobachtungengeschĂ€tzt, um dann auf Basis dieser MDP-SchĂ€tzung eine Policy abzuleiten. DieArbeit beschreibt, wie die SchĂ€tzer-Unsicherheit des MDP in diePolicy-Erstellung eingebracht werden kann, um mit diesem Wissen das Risikoeiner schlechten Policy aufgrund einer fehlerhaften MDP-SchĂ€tzung zuverringern. Außerdem wird so effiziente Exploration sowie Policy-Bewertungermöglicht. Anschließend wendet sich die Arbeit Problemen mit kontinuierlichenZustandsrĂ€umen zu und konzentriert sich auf auf RL-Verfahren, welche aufFitted Q-Iteration (FQI) basieren, insbesondere Neural Fitted Q-Iteration(NFQ). Zwar ist NFQ sehr dateneffizient, jedoch nicht so zuverlĂ€ssig, wie fĂŒrdie autonome Regelung nötig wĂ€re. Die Arbeit schlĂ€gt die Verwendung vonEnsembles vor, um die ZuverlĂ€ssigkeit von NFQ zu erhöhen. Es werden eine Reihevon Möglichkeiten der Ensemble-Nutzung entworfen und evaluiert. Bei allenbetrachteten RL-Problemen sorgen Ensembles fĂŒr eine zuverlĂ€ssigere Erstellungguter Policies. Im nĂ€chsten Schritt werden Möglichkeiten der Policy-Bewertung beikontinuierlichen ZustandsrĂ€umen besprochen. Die Arbeit schlĂ€gt vor, FittedPolicy Evaluation (FPE), eine Variante von FQI fĂŒr Policy Evaluation, mitanderen Regressionsverfahren und/oder anderen DatensĂ€tzen zu kombinieren, umein Maß fĂŒr die Policy-QualitĂ€t zu erhalten. Experimente zeigen, dassExtra-Tree-FPE ein realistisches QualitĂ€tsmaß fĂŒr NFQ-generierte Policies liefernkann. Schließlich kombiniert die Arbeit Ensembles und Policy-Bewertung, um mit sichĂ€ndernden RL-Problemen umzugehen. Der wesentliche Beitrag ist das EvolvingEnsemble, dessen Policy sich langsam Ă€ndert, indem alte, untaugliche Policiesentfernt und neue hinzugefĂŒgt werden. Es zeigt sich, dass das EvolvingEnsemble deutlich besser funktioniert als einfachere AnsĂ€tze.With data-efficient reinforcement learning (RL) methods impressive resultscould be achieved, e.g., in the context of gas turbine control. However, inpractice the application of RL still requires much human intervention, whichhinders the application of RL to autonomous control. This thesis addressessome of the remaining problems, particularly regarding the reliability of thepolicy generation process. The thesis first discusses RL problems with discrete state and action spaces.In that context, often an MDP is estimated from observations. It is describedhow to incorporate the estimators' uncertainties into the policy generationprocess. This information can then be used to reduce the risk of obtaining apoor policy due to flawed MDP estimates. Moreover, it is discussed how to usethe knowledge of uncertainty for efficient exploration and the assessment ofpolicy quality without requiring the policy's execution. The thesis then moves on to continuous state problems and focuses on methodsbased on fitted Q-iteration (FQI), particularly neural fitted Q-iteration(NFQ). Although NFQ has proven to be very data-efficient, it is not asreliable as required for autonomous control. The thesis proposes to useensembles to increase reliability. Several ways of ensemble usage in an NFQcontext are discussed and evaluated on a number of benchmark domains. It showsthat in all considered domains with ensembles good policies can be producedmore reliably. Next, policy assessment in continuous domains is discussed. The thesisproposes to use fitted policy evaluation (FPE), an adaptation of FQI to policyevaluation, combined with a different function approximator and/or differentdataset to obtain a measure for policy quality. Results of experiments showthat extra-tree FPE, applied to policies generated by NFQ, produces valuefunctions that can well be used to reason about the true policy quality. Finally, the thesis combines ensembles and policy assessment to derive methodsthat can deal with changing environments. The major contribution is theevolving ensemble. The policy of the evolving ensemble changes slowly as newpolicies are added and old policies removed. It turns out that the evolvingensemble approaches work considerably better than simpler approaches likesingle policies learned with recent observations or simple ensembles

    Learning a model is paramount for sample efficiency in reinforcement learning control of PDEs

    Full text link
    The goal of this paper is to make a strong point for the usage of dynamical models when using reinforcement learning (RL) for feedback control of dynamical systems governed by partial differential equations (PDEs). To breach the gap between the immense promises we see in RL and the applicability in complex engineering systems, the main challenges are the massive requirements in terms of the training data, as well as the lack of performance guarantees. We present a solution for the first issue using a data-driven surrogate model in the form of a convolutional LSTM with actuation. We demonstrate that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system. Furthermore, we show that iteratively updating the model is of major importance to avoid biases in the RL training. Detailed ablation studies reveal the most important ingredients of the modeling process. We use the chaotic Kuramoto-Sivashinsky equation do demonstarte our findings

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models
    • 

    corecore