673 research outputs found

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    Infinite Feature Selection on Shore-Based Biomarkers Reveals Connectivity Modulation after Stroke

    Get PDF
    Connectomics is gaining increasing interest in the scientific and clinical communities. It consists in deriving models of structural or functional brain connections based on some local measures. Here we focus on structural connectivity as detected by diffusion MRI. Connectivity matrices are derived from microstructural indices obtained by the 3D-SHORE. Typically, graphs are derived from connectivity matrices and used for inferring node properties that allow identifying those nodes that play a prominent role in the network. This information can then be used to detect network modulations induced by diseases. In this paper we take a complementary approach and focus on link as opposed to node properties. We hypothesize that network modulation can be better described by measuring the connectivity alteration directly in the form of modulation of the properties of white matter fiber bundles constituting the network communication backbone. The goal of this paper is to detect the paths that are most altered by the pathology by exploiting a feature selection paradigm. Temporal changes on connection weights are treated as features and those playing a leading role in a patient versus healthy controls classification task are detected by the Infinite Feature Selection (Inf-FS) method. Results show that connection paths with high discriminative power can be identified that are shared by the considered microstructural descriptors allowing a classification accuracy ranging between 83% and 89%

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra
    corecore