3,285 research outputs found

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Inventory Management and Demand Forecasting Improvement of a Forecasting Model Based on Artificial Neural Networks

    Get PDF
    Forecasting is predicting or estimating a future event or trend. Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century. As the competitiveness between supply chains intensifies day by day, companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits. Excessive inventory (overstock) and stock outs are very significant issues for suppliers. Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory. Excess inventory can also lead to increased storage, insurance costs and labor as well as lower and degraded quality based on the nature of the product. Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store. If clients are unable to find the right products on the shelves, they may switch to another vendor or purchase alternative items. Demand forecasting is valuable for planning, scheduling and improving the coordination of all supply chain activities. This paper discusses the use of neural networks for seasonal time series forecasting. Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast

    Deep Reinforcement Learning for Active High Frequency Trading

    Full text link
    We introduce the first end-to-end Deep Reinforcement Learning (DRL) based framework for active high frequency trading. We train DRL agents to trade one unit of Intel Corporation stock by employing the Proximal Policy Optimization algorithm. The training is performed on three contiguous months of high frequency Limit Order Book data, of which the last month constitutes the validation data. In order to maximise the signal to noise ratio in the training data, we compose the latter by only selecting training samples with largest price changes. The test is then carried out on the following month of data. Hyperparameters are tuned using the Sequential Model Based Optimization technique. We consider three different state characterizations, which differ in their LOB-based meta-features. Analysing the agents' performances on test data, we argue that the agents are able to create a dynamic representation of the underlying environment. They identify occasional regularities present in the data and exploit them to create long-term profitable trading strategies. Indeed, agents learn trading strategies able to produce stable positive returns in spite of the highly stochastic and non-stationary environment.Comment: 9 pages, 4 figure

    A State-of-the-Art Review of Time Series Forecasting Using Deep Learning Approaches

    Get PDF
    Time series forecasting has recently emerged as a crucial study area with a wide spectrum of real-world applications. The complexity of data processing originates from the amount of data processed in the digital world. Despite a long history of successful time-series research using classic statistical methodologies, there are some limits in dealing with an enormous amount of data and non-linearity. Deep learning techniques effectually handle the complicated nature of time series data. The effective analysis of deep learning approaches like Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long short-term memory (LSTM), Gated Recurrent Unit (GRU), Autoencoders, and other techniques like attention mechanism, transfer learning, and dimensionality reduction are discussed with their merits and limitations. The performance evaluation metrics used to validate the model's accuracy are discussed. This paper reviews various time series applications using deep learning approaches with their benefits, challenges, and opportunities

    Algorithms in future capital markets: A survey on AI, ML and associated algorithms in capital markets

    Get PDF
    This paper reviews Artificial Intelligence (AI), Machine Learning (ML) and associated algorithms in future Capital Markets. New AI algorithms are constantly emerging, with each 'strain' mimicking a new form of human learning, reasoning, knowledge, and decisionmaking. The current main disrupting forms of learning include Deep Learning, Adversarial Learning, Transfer and Meta Learning. Albeit these modes of learning have been in the AI/ML field more than a decade, they now are more applicable due to the availability of data, computing power and infrastructure. These forms of learning have produced new models (e.g., Long Short-Term Memory, Generative Adversarial Networks) and leverage important applications (e.g., Natural Language Processing, Adversarial Examples, Deep Fakes, etc.). These new models and applications will drive changes in future Capital Markets, so it is important to understand their computational strengths and weaknesses. Since ML algorithms effectively self-program and evolve dynamically, financial institutions and regulators are becoming increasingly concerned with ensuring there remains a modicum of human control, focusing on Algorithmic Interpretability/Explainability, Robustness and Legality. For example, the concern is that, in the future, an ecology of trading algorithms across different institutions may 'conspire' and become unintentionally fraudulent (cf. LIBOR) or subject to subversion through compromised datasets (e.g. Microsoft Tay). New and unique forms of systemic risks can emerge, potentially coming from excessive algorithmic complexity. The contribution of this paper is to review AI, ML and associated algorithms, their computational strengths and weaknesses, and discuss their future impact on the Capital Markets

    Stock Portfolio Prediction by Multi-Target Decision Support

    Get PDF
    Investing in the stock market is a complex process due to its high volatility caused by factors as exchange rates, political events, inflation and the market history. To support investor's decisions, the prediction of future stock price and economic metrics is valuable. With the hypothesis that there is a relation among investment performance indicators,  the goal of this paper was exploring multi-target regression (MTR) methods to estimate 6 different indicators and finding out the method that would best suit in an automated prediction tool for decision support regarding predictive performance. The experiments were based on 4 datasets, corresponding to 4 different time periods, composed of 63 combinations of weights of stock-picking concepts each, simulated in the US stock market. We compared traditional machine learning approaches with seven state-of-the-art MTR solutions: Stacked Single Target, Ensemble of Regressor Chains, Deep Structure  for Tracking Asynchronous Regressor Stacking,   Deep  Regressor Stacking, Multi-output Tree Chaining,  Multi-target Augment Stacking  and Multi-output Random Forest (MORF). With the exception of MORF, traditional approaches and the MTR methods were evaluated with Extreme Gradient Boosting, Random Forest and Support Vector Machine regressors. By means of extensive experimental evaluation, our results showed that the most recent MTR solutions can achieve suitable predictive performance, improving all the scenarios (14.70% in the best one, considering all target variables and periods). In this sense, MTR is a proper strategy for building stock market decision support system based on prediction models
    corecore