3,261 research outputs found

    Ensemble Kalman filtering for online Gaussian process regression and learning

    Get PDF
    Gaussian process regression is a machine learning approach which has been shown its power for estimation of unknown functions. However, Gaussian processes suffer from high computational complexity, as in a basic form they scale cubically with the number of observations. Several approaches based on inducing points were proposed to handle this problem in a static context. These methods though face challenges with real-time tasks and when the data is received sequentially over time. In this paper, a novel online algorithm for training sparse Gaussian process models is presented. It treats the mean and hyperparameters of the Gaussian process as the state and parameters of the ensemble Kalman filter, respectively. The online evaluation of the parameters and the state is performed on new upcoming samples of data. This procedure iteratively improves the accuracy of parameter estimates. The ensemble Kalman filter reduces the computational complexity required to obtain predictions with Gaussian processes preserving the accuracy level of these predictions. The performance of the proposed method is demonstrated on the synthetic dataset and real large dataset of UK house prices

    Diffusion Maps Kalman Filter for a Class of Systems with Gradient Flows

    Full text link
    In this paper, we propose a non-parametric method for state estimation of high-dimensional nonlinear stochastic dynamical systems, which evolve according to gradient flows with isotropic diffusion. We combine diffusion maps, a manifold learning technique, with a linear Kalman filter and with concepts from Koopman operator theory. More concretely, using diffusion maps, we construct data-driven virtual state coordinates, which linearize the system model. Based on these coordinates, we devise a data-driven framework for state estimation using the Kalman filter. We demonstrate the strengths of our method with respect to both parametric and non-parametric algorithms in three tracking problems. In particular, applying the approach to actual recordings of hippocampal neural activity in rodents directly yields a representation of the position of the animals. We show that the proposed method outperforms competing non-parametric algorithms in the examined stochastic problem formulations. Additionally, we obtain results comparable to classical parametric algorithms, which, in contrast to our method, are equipped with model knowledge.Comment: 15 pages, 12 figures, submitted to IEEE TS

    A Nonparametric Adaptive Nonlinear Statistical Filter

    Full text link
    We use statistical learning methods to construct an adaptive state estimator for nonlinear stochastic systems. Optimal state estimation, in the form of a Kalman filter, requires knowledge of the system's process and measurement uncertainty. We propose that these uncertainties can be estimated from (conditioned on) past observed data, and without making any assumptions of the system's prior distribution. The system's prior distribution at each time step is constructed from an ensemble of least-squares estimates on sub-sampled sets of the data via jackknife sampling. As new data is acquired, the state estimates, process uncertainty, and measurement uncertainty are updated accordingly, as described in this manuscript.Comment: Accepted at the 2014 IEEE Conference on Decision and Contro
    • …
    corecore