113 research outputs found

    The Ontology of Biological Attributes (OBA)-computational traits for the life sciences.

    Get PDF
    Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos

    Predicting Gene-Disease Associations with Knowledge Graph Embeddings over Multiple Ontologies

    Get PDF
    Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2021There are still more than 1,400 Mendelian conditions whose molecular cause is un known. In addition, almost all medical conditions are somehow influenced by human genetic variation. This challenge also presents itself as an opportunity to understand the mechanisms of diseases, thus allowing the development of better mitigation strategies, finding diagnostic markers and therapeutic targets. Deciphering the link between genes and diseases is one of the most demanding tasks in biomedical research. Computational approaches for gene-disease associations prediction can greatly accelerate this process, and recent developments that explore the scientific knowledge described in ontologies have achieved good results. State-of-the-art approaches that take advantage of ontologies or knowledge graphs for these predictions are typically based on semantic similarity measures that only take into consideration hierarchical relations. New developments in the area of knowledge graphs embeddings support more powerful representations but are usually limited to a single ontology, which may be insufficient in multi-domain applications such as the prediction of gene-disease associations. This dissertation proposes a novel approach of gene-disease associations prediction by exploring both the Human Phenotype Ontology and the Gene Ontology, using knowledge graph embeddings to represent gene and disease features in a shared semantic space that covers both gene function and phenotypes. Our approach integrates different methods for building the shared semantic space, as well as multiple knowledge graph embeddings algorithms and machine learning methods. The prediction performance was evaluated on curated gene-disease associations from DisGeNET and compared to classical semantic similarity measures. Our experiments demonstrate the value of employing knowledge graph embeddings based on random walks and highlight the need for closer integration of different ontologies

    Covid19/IT the digital side of Covid19: A picture from Italy with clustering and taxonomy

    Get PDF
    The Covid19 pandemic has significantly impacted on our lives, triggering a strong reaction resulting in vaccines, more effective diagnoses and therapies, policies to contain the pandemic outbreak, to name but a few. A significant contribution to their success comes from the computer science and information technology communities, both in support to other disciplines and as the primary driver of solutions for, e.g., diagnostics, social distancing, and contact tracing. In this work, we surveyed the Italian computer science and engineering community initiatives against the Covid19 pandemic. The 128 responses thus collected document the response of such a community during the first pandemic wave in Italy (February-May 2020), through several initiatives carried out by both single researchers and research groups able to promptly react to Covid19, even remotely. The data obtained by the survey are here reported, discussed and further investigated by Natural Language Processing techniques, to generate semantic clusters based on embedding representations of the surveyed activity descriptions. The resulting clusters have been then used to extend an existing Covid19 taxonomy with the classification of related research activities in computer science and information technology areas, summarizing this work contribution through a reproducible survey-to-taxonomy methodology

    Aquisição e Interrogação de Conhecimento de Prática Clínica usando Linguagem Natural

    Get PDF
    The scientific concepts, methodologies and tools in the Knowledge Representation (KR) sub- domain of applied Artificial Intelligence (AI) came a long way with enormous strides in recent years. The usage of domain conceptualizations that are Ontologies is now powerful enough to aim at computable reasoning over complex realities. One of the most challenging scientific and technical human endeavors is the daily Clinical Prac- tice (CP) of Cardiovascular (CV) specialty healthcare providers. Such a complex domain can benefit largely from the possibility of clinical reasoning aids that are now at the edge of being available. We research into a complete end-to-end solid ontological infrastructure for CP knowledge represen- tation as well as the associated processes to automatically acquire knowledge from clinical texts and reason over it

    Clinical practice knowledge acquisition and interrogation using natural language: aquisição e interrogação de conhecimento de prática clínica usando linguagem natural

    Get PDF
    Os conceitos científicos, metodologias e ferramentas no sub-dominio da Representação de Conhecimento da área da Inteligência Artificial Aplicada têm sofrido avanços muito significativos nos anos recentes. A utilização de Ontologias como conceptualizações de domínios é agora suficientemente poderosa para aspirar ao raciocínio computacional sobre realidades complexas. Uma das tarefas científica e tecnicamente mais desafiante é prestação de cuidados pelos profissionais de saúde na especialidade cardiovascular. Um domínio de tal forma complexo pode beneficiar largamente da possibilidade de ajudas ao raciocínio clínico que estão neste momento a beira de ficarem disponíveis. Investigamos no sentido de desenvolver uma infraestrutura sólida e completa para a representação de conhecimento na prática clínica bem como os processes associados para adquirir o conhecimento a partir de textos clínicos e raciocinar automaticamente sobre esse conhecimento; ABSTRACT: The scientific concepts, methodologies and tools in the Knowledge Representation (KR) subdomain of applied Artificial Intelligence (AI) came a long way with enormous strides in recent years. The usage of domain conceptualizations that are Ontologies is now powerful enough to aim at computable reasoning over complex realities. One of the most challenging scientific and technical human endeavors is the daily Clinical Practice (CP) of Cardiovascular (C V) specialty healthcare providers. Such a complex domain can benefit largely from the possibility of clinical reasoning aids that are now at the edge of being available. We research into al complete end-to-end solid ontological infrastructure for CP knowledge representation as well as the associated processes to automatically acquire knowledge from clinical texts and reason over it

    The Gene Ontology Handbook

    Get PDF
    bioinformatics; biotechnolog

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table
    corecore