545 research outputs found

    Cómo adaptar un modelo de aprendizaje profundo a un nuevo dominio: el caso de la extracción de relaciones biomédicas

    Get PDF
    In this article, we study the relation extraction problem from Natural Language Processing (NLP) implementing a domain adaptation setting without external resources. We trained a Deep Learning (DL) model for Relation Extraction (RE), which extracts semantic relations in the biomedical domain. However, can the model be applied to different domains? The model should be adaptable to automatically extract relationships across different domains using the DL network. Completely training DL models in a short time is impractical because the models should quickly adapt to different datasets in several domains without delay. Therefore, adaptation is crucial for intelligent systems, where changing factors and unanticipated perturbations are common. In this study, we present a detailed analysis of the problem, as well as preliminary experimentation, results, and their evaluation.En este trabajo estudiamos el problema de extracción de relaciones del Procesamiento de Lenguaje Natural (PLN). Realizamos una configuración para la adaptación de dominio sin recursos externos. De esta forma, entrenamos un modelo con aprendizaje profundo (DL) para la extracción de relaciones (RE). El modelo permite extraer relaciones semánticas para el dominio biomédico. Sin embargo, ¿El modelo puede ser aplicado a diferentes dominios? El modelo debería adaptarse automáticamente para la extracción de relaciones entre diferentes dominios usando la red de DL. Entrenar completamente modelos DL en una escala de tiempo corta no es práctico, deseamos que los modelos se adapten rápidamente de diferentes conjuntos de datos con varios dominios y sin demora. Así, la adaptación es crucial para los sistemas inteligentes que operan en el mundo real, donde los factores cambiantes y las perturbaciones imprevistas son habituales. En este artículo, presentamos un análisis detallado del problema, una experimentación preliminar, resultados y la discusión acerca de los resultados

    Drug prescription support in dental clinics through drug corpus mining

    Get PDF
    The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients

    Drug prescription support in dental clinics through drug corpus mining

    Get PDF
    The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients

    Deeper clinical document understanding using relation extraction

    Get PDF
    The surging amount of biomedical literature & digital clinical records presents a growing need for text mining techniques that can not only identify but also semantically relate entities in unstructured data. In this paper we propose a text mining framework comprising of Named Entity Recognition (NER) and Relation Extraction (RE) models, which expands on previous work in three main ways. First, we introduce two new RE model architectures -- an accuracy-optimized one based on BioBERT and a speed-optimized one utilizing crafted features over a Fully Connected Neural Network (FCNN). Second, we evaluate both models on public benchmark datasets and obtain new state-of-the-art F1 scores on the 2012 i2b2 Clinical Temporal Relations challenge (F1 of 73.6, +1.2% over the previous SOTA), the 2010 i2b2 Clinical Relations challenge (F1 of 69.1, +1.2%), the 2019 Phenotype-Gene Relations dataset (F1 of 87.9, +8.5%), the 2012 Adverse Drug Events Drug-Reaction dataset (F1 of 90.0, +6.3%), and the 2018 n2c2 Posology Relations dataset (F1 of 96.7, +0.6%). Third, we show two practical applications of this framework -- for building a biomedical knowledge graph and for improving the accuracy of mapping entities to clinical codes. The system is built using the Spark NLP library which provides a production-grade, natively scalable, hardware-optimized, trainable & tunable NLP framework.Computer Systems, Imagery and Medi

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    Event extraction from biomedical texts using trimmed dependency graphs

    Get PDF
    This thesis explores the automatic extraction of information from biomedical publications. Such techniques are urgently needed because the biosciences are publishing continually increasing numbers of texts. The focus of this work is on events. Information about events is currently manually curated from the literature by biocurators. Biocuration, however, is time-consuming and costly so automatic methods are needed for information extraction from the literature. This thesis is dedicated to modeling, implementing and evaluating an advanced event extraction approach based on the analysis of syntactic dependency graphs. This work presents the event extraction approach proposed and its implementation, the JReX (Jena Relation eXtraction) system. This system was used by the University of Jena (JULIE Lab) team in the "BioNLP 2009 Shared Task on Event Extraction" competition and was ranked second among 24 competing teams. Thereafter JReX was the highest scorer on the worldwide shared U-Compare event extraction server, outperforming the competing systems from the challenge. This success was made possible, among other things, by extensive research on event extraction solutions carried out during this thesis, e.g., exploring the effects of syntactic and semantic processing procedures on solving the event extraction task. The evaluations executed on standard and community-wide accepted competition data were complemented by real-life evaluation of large-scale biomedical database reconstruction. This work showed that considerable parts of manually curated databases can be automatically re-created with the help of the event extraction approach developed. Successful re-creation was possible for parts of RegulonDB, the world's largest database for E. coli. In summary, the event extraction approach justified, developed and implemented in this thesis meets the needs of a large community of human curators and thus helps in the acquisition of new knowledge in the biosciences
    • …
    corecore