189 research outputs found

    Multi-Modal Answer Validation for Knowledge-Based VQA

    Get PDF
    The problem of knowledge-based visual question answering involves answering questions that require external knowledge in addition to the content of the image. Such knowledge typically comes in various forms, including visual, textual, and commonsense knowledge. Using more knowledge sources increases the chance of retrieving more irrelevant or noisy facts, making it challenging to comprehend the facts and find the answer. To address this challenge, we propose Multi-modal Answer Validation using External knowledge (MAVEx), where the idea is to validate a set of promising answer candidates based on answer-specific knowledge retrieval. Instead of searching for the answer in a vast collection of often irrelevant facts as most existing approaches do, MAVEx aims to learn how to extract relevant knowledge from noisy sources, which knowledge source to trust for each answer candidate, and how to validate the candidate using that source. Our multi-modal setting is the first to leverage external visual knowledge (images searched using Google), in addition to textual knowledge in the form of Wikipedia sentences and ConceptNet concepts. Our experiments with OK-VQA, a challenging knowledge-based VQA dataset, demonstrate that MAVEx achieves new state-of-the-art results. Our code is available at https://github.com/jialinwu17/MAVEXComment: AAAI 202

    Dual Attention on Pyramid Feature Maps for Image Captioning

    Full text link
    Generating natural sentences from images is a fundamental learning task for visual-semantic understanding in multimedia. In this paper, we propose to apply dual attention on pyramid image feature maps to fully explore the visual-semantic correlations and improve the quality of generated sentences. Specifically, with the full consideration of the contextual information provided by the hidden state of the RNN controller, the pyramid attention can better localize the visually indicative and semantically consistent regions in images. On the other hand, the contextual information can help re-calibrate the importance of feature components by learning the channel-wise dependencies, to improve the discriminative power of visual features for better content description. We conducted comprehensive experiments on three well-known datasets: Flickr8K, Flickr30K and MS COCO, which achieved impressive results in generating descriptive and smooth natural sentences from images. Using either convolution visual features or more informative bottom-up attention features, our composite captioning model achieves very promising performance in a single-model mode. The proposed pyramid attention and dual attention methods are highly modular, which can be inserted into various image captioning modules to further improve the performance.Comment: in IEEE Transactions on Multimedia, 202

    Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport

    Full text link
    Selecting input features of top relevance has become a popular method for building self-explaining models. In this work, we extend this selective rationalization approach to text matching, where the goal is to jointly select and align text pieces, such as tokens or sentences, as a justification for the downstream prediction. Our approach employs optimal transport (OT) to find a minimal cost alignment between the inputs. However, directly applying OT often produces dense and therefore uninterpretable alignments. To overcome this limitation, we introduce novel constrained variants of the OT problem that result in highly sparse alignments with controllable sparsity. Our model is end-to-end differentiable using the Sinkhorn algorithm for OT and can be trained without any alignment annotations. We evaluate our model on the StackExchange, MultiNews, e-SNLI, and MultiRC datasets. Our model achieves very sparse rationale selections with high fidelity while preserving prediction accuracy compared to strong attention baseline models.Comment: To appear at ACL 202

    What's in a Name? Beyond Class Indices for Image Recognition

    Full text link
    Existing machine learning models demonstrate excellent performance in image object recognition after training on a large-scale dataset under full supervision. However, these models only learn to map an image to a predefined class index, without revealing the actual semantic meaning of the object in the image. In contrast, vision-language models like CLIP are able to assign semantic class names to unseen objects in a `zero-shot' manner, although they still rely on a predefined set of candidate names at test time. In this paper, we reconsider the recognition problem and task a vision-language model to assign class names to images given only a large and essentially unconstrained vocabulary of categories as prior information. We use non-parametric methods to establish relationships between images which allow the model to automatically narrow down the set of possible candidate names. Specifically, we propose iteratively clustering the data and voting on class names within them, showing that this enables a roughly 50\% improvement over the baseline on ImageNet. Furthermore, we tackle this problem both in unsupervised and partially supervised settings, as well as with a coarse-grained and fine-grained search space as the unconstrained dictionary

    Document And Query Expansion Method With Dirichlet Smoothing Model For Retrieval Of Metadata Content In Digital Resource Objects

    Get PDF
    In this thesis, an IR framework is proposed which consists of three main stages: enhanced document expansion (EDE) method, adaptive structured Dirichlet smoothing (ASDS) model, and semantic query expansion (SQE) method. The first stage involves proposing an EDE method in which a new procedure is introduced to increase each metadata unit content according to some specific steps by adding new information which is more relevant and closer to each metadata unit in each document while the second stage involves proposing an ASDS model that has two scenarios to improve the Dirichlet smoothing model. The first scenario is to enhance the model by taking into account of the document structure as in the proposed structured Dirichlet smoothing (SDS) model while the second scenario is to modify the parameters used in the model as in the proposed Adaptive Dirichlet smoothing (ADS) model. The third stage of the proposed framework involves the proposed SQE method to enhance the retrieval performance of DROs by improving the quality of candidate terms that are added semantically to the entire query term

    Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

    Get PDF
    Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.This work has been partially supported by the European Commission ICT COST Action “Multi-task, Multilingual, Multi-modal Language Generation” (CA18231). AE was supported by BAGEP 2021 Award of the Science Academy. EE was supported in part by TUBA GEBIP 2018 Award. BP is in in part funded by Independent Research Fund Denmark (DFF) grant 9063-00077B. IC has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 838188. EL is partly funded by Generalitat Valenciana and the Spanish Government throught projects PROMETEU/2018/089 and RTI2018-094649-B-I00, respectively. SMI is partly funded by UNIRI project uniri-drustv-18-20. GB is partly supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Hungarian Artificial Intelligence National Laboratory Programme. COT is partially funded by the Romanian Ministry of European Investments and Projects through the Competitiveness Operational Program (POC) project “HOLOTRAIN” (grant no. 29/221 ap2/07.04.2020, SMIS code: 129077) and by the German Academic Exchange Service (DAAD) through the project “AWAKEN: content-Aware and netWork-Aware faKE News mitigation” (grant no. 91809005). ESA is partially funded by the German Academic Exchange Service (DAAD) through the project “Deep-Learning Anomaly Detection for Human and Automated Users Behavior” (grant no. 91809358)

    A survey on knowledge-enhanced multimodal learning

    Full text link
    Multimodal learning has been a field of increasing interest, aiming to combine various modalities in a single joint representation. Especially in the area of visiolinguistic (VL) learning multiple models and techniques have been developed, targeting a variety of tasks that involve images and text. VL models have reached unprecedented performances by extending the idea of Transformers, so that both modalities can learn from each other. Massive pre-training procedures enable VL models to acquire a certain level of real-world understanding, although many gaps can be identified: the limited comprehension of commonsense, factual, temporal and other everyday knowledge aspects questions the extendability of VL tasks. Knowledge graphs and other knowledge sources can fill those gaps by explicitly providing missing information, unlocking novel capabilities of VL models. In the same time, knowledge graphs enhance explainability, fairness and validity of decision making, issues of outermost importance for such complex implementations. The current survey aims to unify the fields of VL representation learning and knowledge graphs, and provides a taxonomy and analysis of knowledge-enhanced VL models

    CONDA-PM -- A Systematic Review and Framework for Concept Drift Analysis in Process Mining

    Get PDF
    Business processes evolve over time to adapt to changing business environments. This requires continuous monitoring of business processes to gain insights into whether they conform to the intended design or deviate from it. The situation when a business process changes while being analysed is denoted as Concept Drift. Its analysis is concerned with studying how a business process changes, in terms of detecting and localising changes and studying the effects of the latter. Concept drift analysis is crucial to enable early detection and management of changes, that is, whether to promote a change to become part of an improved process, or to reject the change and make decisions to mitigate its effects. Despite its importance, there exists no comprehensive framework for analysing concept drift types, affected process perspectives, and granularity levels of a business process. This article proposes the CONcept Drift Analysis in Process Mining (CONDA-PM) framework describing phases and requirements of a concept drift analysis approach. CONDA-PM was derived from a Systematic Literature Review (SLR) of current approaches analysing concept drift. We apply the CONDA-PM framework on current approaches to concept drift analysis and evaluate their maturity. Applying CONDA-PM framework highlights areas where research is needed to complement existing efforts.Comment: 45 pages, 11 tables, 13 figure
    corecore