157 research outputs found

    How to Expand the Workspace of Parallel Robots

    Get PDF
    In this chapter, methods for expanding the workspace of parallel robots are introduced. Firstly, methods for expanding the translational workspace of the parallel robot are discussed. The parallel robot has multiple solutions of the inverse and forward displacement analysis. By changing its configurations from one solution to another, the parallel robot can expand its translational workspace. However, conventional nonredundant parallel robot encounters singularity during the mode change. Singularity-free mode changes of the parallel robot by redundant actuation are introduced. Next, methods for expanding the rotational workspace of the parallel robot are shown. In order to achieve the large rotation, some mechanical gimmicks by gears, pulleys, and helical joints have been embedded in the moving part. A novel differential screw-nut mechanism for expanding the rotational workspace of the parallel robot is introduced

    Maximal Operational Workspace of Parallel Manipulators

    Get PDF

    A New Index for Detecting and Avoiding Type II Singularities for the Control of Non-Redundant Parallel Robots

    Full text link
    [ES] Los robots paralelos (PR por sus siglas en inglés) son mecanismos donde el efector final está unido a la base, mediante al menos dos cadenas cinemáticas abiertas. Los PRs ofrecen una gran capacidad de carga y alta precisión, lo que los hace adecuados para diversas aplicaciones, entre ellas la interacción persona-robot. Sin embargo, en las proximidades de una singularidad Tipo II (singularidad dentro del espacio de trabajo), un PR pierde el control sobre los movimientos del efector final. La pérdida de control representa un riesgo importante para los usuarios, especialmente en rehabilitación robótica. En las últimas décadas, los PR se han popularizado en la rehabilitación de miembros inferiores debido al aumento del número de personas que viven con limitaciones físicas. Así, esta tesis trata sobre la detección y evitación de singularidades de Tipo II para asegurar total control de un PR no redundante para la rehabilitación y diagnóstico de rodilla, denominado 3UPS+RPU. En la literatura, existen varios índices para detectar y medir la cercanía a una singularidad basados en métodos analíticos y geométricos. Sin embargo, algunos de estos índices carecen de significado físico y son incapaces de identificar los actuadores responsables de la pérdida de control. Esta tesis aporta dos novedosos índices para detectar y medir la proximidad a una singularidad de Tipo II, capaces de identificar el par de actuadores responsables de la singularidad. Los dos índices son los ángulos entre los componentes lineal (T_i,j) y angular (O_i,j) de dos Twist Screw de Salida (OTS por sus siglas en inglés) normalizados i,j. Una singularidad Tipo II es detectada cuando T_i,j = O_i,j = 0 y su proximidad se mide mediante los mínimos ángulos T_i,j (minT) y O_i,j (minO) para los casos plano y espacial, respectivamente. La eficacia de los índices T_i,j y O_i,j se evalúa de forma teórica y experimental en un robot 3UPS+RPU y un mecanismo de cinco barras. Además, se propone un procedimiento experimental para el adecuado establecimiento del límite de cercanía a una singularidad de Tipo II mediante la aproximación progresiva del PR a una singularidad y la medición de la última posición controlable. Posteriormente, se desarrollan dos nuevos algoritmos deterministas para liberar y evitar una singularidad de Tipo II basados en minT y minO para PR no redundantes. minT y minO se utilizan para identificar los dos actuadores a mover para liberar o evitar el PR de una singularidad. Ambos algoritmos requieren una medición precisa de la pose alcanzada por el efector final. El algoritmo para liberar un PR de una configuración singular se aplica con éxito en un controlador híbrido basado en visión artificial para el PR 3UPS+RPU. El controlador utiliza un sistema de fotogrametría para medir la pose del robot debido a la degeneración del modelo cinemático en las proximidades de una singularidad. El algoritmo de evasión de singularidades Tipo II se aplica a la planificación offline y online de trayectorias no singulares para un mecanismo de cinco barras y el PR 3UPS+RPU. Estas aplicaciones verifican el bajo coste computacional y la mínima desviación introducida en la trayectoria original por los nuevos algoritmos. La implementación directa de un controlador de fuerza/posición en el PR 3UPS+RPU es insegura porque el paciente podría llevar involuntariamente al PR a una singularidad. Por lo tanto, esta tesis concluye presentando un novedoso controlador de fuerza/posición complementado con el algoritmo de evasión de singularidades de Tipo II. El nuevo controlador se evalúa durante rehabilitación activa de una pierna de maniquí y una pierna humana no lesionada. Los resultados muestran que el nuevo controlador combinado mantiene el PR 3UPS+RPU lejos de configuraciones singulares con una desviación mínima de la trayectoria original. Por lo tanto, esta tesis habilita el 3UPS+RPU PR para la rehabilitación segura de miembros inferiores lesionados.[CAT] Els robots paral·lels (PR per les seues sigles en anglés) són mecanismes on l'efector final està unit a la base, mitjançant almenys dues cadenes cinemàtiques obertes. Els PRs ofereixen una gran capacitat de càrrega i alta precisió, la qual cosa els fa adequats per a diverses aplicacions, entre elles la interacció persona-robot. No obstant això, en les proximitats d'una singularitat Tipus II (singularitat dins de l'espai de treball), un PR perd el control sobre els moviments de l'efector final. La pèrdua de control representa un risc important per als usuaris, especialment en rehabilitació robòtica. En les últimes dècades, els PR s'han popularitzat en la rehabilitació de membres inferiors a causa de l'augment del nombre de persones que viuen amb limitacions físiques. Així, aquesta tesi tracta sobre la detecció i evació de singularitats de Tipus II per a assegurar total control d'un PR no redundant per a la rehabilitació i diagnòstic de genoll, denominat 3UPS+RPU. En la literatura, existeixen diversos índexs per a detectar i mesurar la proximitat a una singularitat basats en mètodes analítics i geomètrics. No obstant això, alguns d'aquests índexs manquen de significat físic i són incapaços d'identificar els actuadors responsables de la pèrdua de control. Aquesta tesi aporta dos nous índexs per a detectar i mesurar la proximitat a una singularitat de Tipus II, capaços d'identificar el parell d'actuadors responsables de la singularitat. Els dos índexs són els angles entre els components lineal (T_i,j) i angular (O_i,j) de dues Twist Screw d'Eixida (OTS per les seues sigles en engonals) normalitzats i,j. Una singularitat Tipus II és detectada quan T_i,j = O_i,j = 0 i la seua proximitat es mesura mitjançant els minimos angles T_i,j (minT) i O_i,j (minO) per als casos pla i espacial, respectivament. L'eficàcia dels índexs T_i,j i O_i,j es evalua de manera teòrica i experimental en un robot 3UPS+RPU i un mecanisme de cinc barres. A més, es proposa un procediment experimental per a l'adequat establiment del límit de proximitat a una singularitat de Tipus II mitjançant l'aproximació progressiva del PR a una singularitat i el mesurament de l'última posició controlable. Posteriorment, es desenvolupen dos nous algorismes deterministes per a alliberar i evadir una singularitat de Tipus II basats en minT i minO per a PR no redundants. minT i minO s'utilitzen per a identificar els dos actuadors a moure per a alliberar o evadir el PR d'una singularitat. Aquests algorismes requereixen un mesurament precís de la posa aconseguida per l'efector final. L'algorisme per a alliberar un PR d'una configuració singular s'aplica amb èxit en un controlador híbrid basat en visió artificial per al PR 3UPS+RPU. El controlador utilitza un sistema de fotogrametria per a mesurar la posa del robot a causa de la degeneració del model cinemàtic en les proximitats d'una singularitat. L'algorisme d'evació de singularitats Tipus II s'aplica a la planificació offline i en línia de trajectòries no singulars per a un mecanisme de cinc barres i el PR 3UPS+RPU. Aquestes aplicacions verifiquen el baix cost computacional i la mínima desviació introduïda en la trajectòria original pels nous algorismes. La implementació directa d'un controlador de força/posició en el PR 3UPS+RPU és insegura perquè el pacient podria portar involuntàriament al PR a una singularitat. Per tant, aquesta tesi conclou presentant un nou controlador de força/posició complementat amb l'algorisme d'evació de singularitats de Tipus II. El nou controlador s'avalua durant la rehabilitació activa d'una cama de maniquí i una cama humana no lesionada. Els resultats mostren que el nou controlador combinat manté el PR 3UPS+RPU lluny de configuracions singulars amb una desviació mínima de la trajectòria original. Per tant, aquesta tesi habilita el 3UPS+RPU PR per a la rehabilitació segura dels membres inferiors lesionats.[EN] Parallel Robots (PR)s are mechanisms where the end-effector is linked to the base by at least two open kinematics chains. The PRs offer a high payload and high accuracy, making them suitable for various applications, including human robot interaction. However, in proximity to a Type II singularity (singularity within the workspace), a PR loses control over the movements of the end-effector. The loss of control represents a major risk for users, especially in robotic rehabilitation. In the last decades, PRs have become popular in lower limb rehabilitation because of the increment in the number of people living with physical limitations. Thus, this thesis is about the detection and avoidance of Type II singularities to ensure complete control of a non-redundant PR for knee rehabilitation and diagnosis named 3UPS+RPU. In the literature, several indices exist to detect and measure the closeness to a singular configuration based on analytical and geometrical methods. However, some of these indices have no physical meaning, and they are unable to identify the actuators responsible for the loss of control. This thesis contributes two novel indices to detect and measure the proximity to a Type II singularity capable of identifying the pair of actuators responsible for the singularity. The two indices are the angles between the linear (T_i,j) and the angular (O_i,j) components of two i,j normalised Output Twist Screws (OTSs). A Type II singularity is detected when the angles T_i,j = O_i,j = 0 and its closeness is measured by the minimum T_i,j (minT) and minimum O_i,j (minO) for planar and spatial cases, respectively. The effectiveness of the indices T_i,j and O_i,j is evaluated from a theoretical and experimental perspective in a 3UPS+RPU and a five bars mechanism. Moreover, an experimental procedure is proposed for setting a proper limit of closeness to a Type II singularity by the progressive approach of the PR to singular configuration and measuring the last controllable pose. Subsequently, two novel deterministic algorithms for releasing and avoiding Type II singularities based on minT and minO are developed for non-redundant PRs. The minT and minO are used to identify the two actuators to move for release or prevent the PR from the singularity. Both algorithms require an accurate measuring of the pose reached by the end-effector. The algorithm to release a PR from a singular configuration is successfully applied in a vision-based hybrid controller for the 3UPS+RPU PR. The controller uses a photogrammetry system to measure the pose of the robot due to the degeneration of the kinematic model in the vicinity of a singularity. The Type II singularity avoidance algorithm is applied to offline and online free-singularity trajectory planning for a five-bar mechanism and the 3UPS+RPU PR. These applications verify the low computation cost and the minimum deviation introduced in the original trajectory for both novel algorithms. The direct implementation of a force/position controller in the 3UPS+RPU PR is unsafe because the patient could unintentionally drive the PR to a Type II singularity. Therefore, this thesis concludes by presenting a novel force/position controller complemented with the Type II singularity avoidance algorithm. The complemented controller is evaluated during patient-active exercises in a mannequin leg and an uninjured human limb. The results show that the novel combined controller keeps the 3UPS+RPU PR far from singular configurations with a minimum deviation on the original trajectory. Hence, this thesis enables the 3UPS+RPU PR for the safe rehabilitation of injured lower limbs.Pulloquinga Zapata, JL. (2023). A New Index for Detecting and Avoiding Type II Singularities for the Control of Non-Redundant Parallel Robots [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19427

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Concept and Design of a Hand-held Mobile Robot System for Craniotomy

    Get PDF
    This work demonstrates a highly intuitive robot for Surgical Craniotomy Procedures. Utilising a wheeled hand-held robot, to navigate the Craniotomy Drill over a patient\u27s skull, the system does not remove the surgeons from the procedure, but supports them during this critical phase of the operation

    Robocatch: Design and Making of a Hand-Held Spillage-Free Specimen Retrieval Robot for Laparoscopic Surgery

    Get PDF
    Specimen retrieval is an important step in laparoscopy, a minimally invasive surgical procedure performed to diagnose and treat a myriad of medical pathologies in fields ranging from gynecology to oncology. Specimen retrieval bags (SRBs) are used to facilitate this task, while minimizing contamination of neighboring tissues and port-sites in the abdominal cavity. This manual surgical procedure requires usage of multiple ports, creating a traffic of simultaneous operations of multiple instruments in a limited shared workspace. The skill-demanding nature of this procedure makes it time-consuming, leading to surgeons’ fatigue and operational inefficiency. This thesis presents the design and making of RoboCatch, a novel hand-held robot that aids a surgeon in performing spillage-free retrieval of operative specimens in laparoscopic surgery. The proposed design significantly modifies and extends conventional instruments that are currently used by surgeons for the retrieval task: The core instrumentation of RoboCatch comprises a webbed three-fingered grasper and atraumatic forceps that are concentrically situated in a folded configuration inside a trocar. The specimen retrieval task is achieved in six stages: 1) The trocar is introduced into the surgical site through an instrument port, 2) the three webbed fingers slide out of the tube and simultaneously unfold in an umbrella like-fashion, 3) the forceps slide toward, and grasp, the excised specimen, 4) the forceps retract the grasped specimen into the center of the surrounding grasper, 5) the grasper closes to achieve a secured containment of the specimen, and 6) the grasper, along with the contained specimen, is manually removed from the abdominal cavity. The resulting reduction in the number of active ports reduces obstruction of the port-site and increases the procedure’s efficiency. The design process was initiated by acquiring crucial parameters from surgeons and creating a design table, which informed the CAD modeling of the robot structure and selection of actuation units and fabrication material. The robot prototype was first examined in CAD simulation and then fabricated using an Objet30 Prime 3D printer. Physical validation experiments were conducted to verify the functionality of different mechanisms of the robot. Further, specimen retrieval experiments were conducted with porcine meat samples to test the feasibility of the proposed design. Experimental results revealed that the robot was capable of retrieving masses of specimen ranging from 1 gram to 50 grams. The making of RoboCatch represents a significant step toward advancing the frontiers of hand-held robots for performing specimen retrieval tasks in minimally invasive surgery

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Méthode interactive et par l'apprentissage pour la generation de trajectoire en conception du produit

    Get PDF
    The accessibility is an important factor considered in the validation and verification phase of the product design and usually dominates the time and costs in this phase. Defining the accessibility verification as the motion planning problem, the sampling based motion planners gained success in the past fifteen years. However, the performances of them are usually shackled by the narrow passage problem arising when complex assemblies are composed of large number of parts, which often leads to scenes with high obstacle densities. Unfortunately, humans’ manual manipulations in the narrow passage always show much more difficulties due to the limitations of the interactive devices or the cognitive ability. Meanwhile, the challenges of analyzing the end users’ response in the design process promote the integration with the direct participation of designers.In order to accelerate the path planning in the narrow passage and find the path complying with user’s preferences, a novel interactive motion planning method is proposed. In this method, the integration with a random retraction process helps reduce the difficulty of manual manipulations in the complex assembly/disassembly tasks and provide local guidance to the sampling based planners. Then a hypothesis is proposed about the correlation between the topological structure of the scenario and the motion path in the narrow passage. The topological structure refers to the medial axis (2D) and curve skeleton (3D) with branches pruned. The correlation runs in an opposite manner to the sampling based method and provide a new perspective to solve the narrow passage problem. The curve matching method is used to explore this correlation and an interactive motion planning framework that can learn from experience is constructed in this thesis. We highlight the performance of our framework on a challenging problem in 2D, in which a non-convex object passes through a cluttered environment filled with randomly shaped and located non-convex obstacles.L'accessibilitéest un facteur important pris en compte dans la validation et la vérification en phase de conception du produit et augmente généralement le temps et les coûts de cette phase. Ce domaine de recherche a eu un regain d’intérêt ces quinze dernières années avec notamment de nouveaux planificateurs de mouvement. Cependant, les performances de ces méthodes sont généralement très faibles lorsque le problème se caractérise par des passages étroits des assemblages complexes composées d'un grand nombre de pièces. Cela conduit souvent àdes scènes àforte densitéd'obstacles. Malheureusement, les manipulations manuelles des humains dans le passage étroit montrent toujours beaucoup de difficultés en raison des limitations des dispositifs interactifs ou la capacitécognitive. Pendant ce temps, les défis de l'analyse de la réponse finale des utilisateurs dans le processus de conception promeut l'intégration avec la participation directe des concepteurs.Afin d'accélérer la planification dans le passage étroit et trouver le chemin le plus conforme aux préférences de l'utilisateur, une nouvelle méthode de planification de mouvement interactif est proposée. Nous avons soulignéla performance de notre algorithme dans certains scénarios difficiles en 2D et 3D environnement.Ensuite, une hypothèse est proposésur la corrélation entre la structure topologique du scénario et la trajectoire dans le passage étroit. La méthode basée sur les courbures est utilisée pour explorer cette corrélation et un cadre de planification de mouvement interactif qui peut apprendre de l'expérience est construit dans cette thèse. Nous soulignons la performance de notre cadre sur un problème difficile en 2D, dans lequel un objet non-convexe passe à travers un environnement encombrérempli d'obstacles non-convexes de forme aléatoire et situés

    A study to implement a 2D laser scanner to determine the platform position and orientation of a cable robot for logistic applications

    Get PDF
    Der Einsatz seilgetriebener Parallelmanipulatoren (CDPR) in der Industrie ist der Weg in eine vielversprechende Zukunft. Im Vergleich zum klassischen Parallelmanipulator hat der CDPR einen größeren Arbeitsraum und verbraucht dennoch weniger Energie. Ein CDPR-Prototyp für die Anwendung im Hochregallager wurde im Lehrstuhl für Mechatronik der Universität Duisburg-Essen entwickelt. Ziel ist, diese Anwendung auf den Markt zu bringen. Für die Roboterkalibrierung, zur Bewertung der Roboterregelung und aus Gründen der Sicherheit muss die Position und Orientierung (Pose) der CABLAR-Plattform bestimmt werden. Aktuelle Forschungsarbeiten zeigen, dass die effektivsten Verfahren zur Bestimmung der Plattformpose die direkte Messung mit einem externen Sensor und die indirekte Messung mit einem integrierten Sensor am Seilroboter sind. Beispiele für die direkte und indirekte Messung sind das Kamerasystem und die Vorwärtskinematik. Aufgrund der hohen Kosten ist das Kamerasystem für diese Anwendung weniger geeignet. Andererseits birgt auch die Vorwärtskinematik einige Nachteile: Die aktuelle Geometrie des Roboters stimmt wahrscheinlich wegen der Herstellungs- und/oder Montagetoleranz nicht mit dem kinematischen Modell überein. Zudem beeinflussen Umweltfaktoren, wie z. B. die Temperatur, und eine lange Betriebszeit die Seileigenschaften (z. B. Elastizitätsmodul, Seildichte, Durchmesser). Diese Änderungen verringern die Genauigkeit der Plattformpositionierung. Ein alternatives Verfahren zur Bestimmung der Plattformpose ist die Messung mittels eines 2D-Laserscanners und eines Orientierungsaufnehmers (IMU). In Kombination mit Reflektoren an der linken, rechten und spezielle Anordnung an oberen Seite des Roboterrahmens liefert der Laserscanner einzigartige Messdaten. Das Messergebnis des Laserscanners basiert auf dem Gerade-Ebene-Schnittpunkt, der mittels Gradientenprojektionsverfahren modelliert wird. Zudem wurde ein Kompensationsalgorithmus entwickelt, um die Auswirkung des Geschwindigkeitseffekts auf das Messergebnis aufgrund der Plattformbewegung zu verringern. Der Näherungswert der normalen Parametrierung aller Reflektoren wird mittels der modizierten Hough-Transformation geschätzt. Unter Zuhilfenahme dieses Wertes wurde das Messergebnis anhand eines zufälligen Stichprobenverfahrens (RANSAC Algorithmus, englisch Random Sample Consensus) segmentiert. Ziel ist, die Messdaten der Reflektoren an der linken, rechten, und oberen Seite des Roboterrahmens zu trennen. Die Methode der kleinsten Quadrate (KQ-Methode) bestimmt anhand dieser segmentierten Messdaten den besten Wert der normalen Parametrierung jeder Geraden, die zu allen Reflektoren gehört. Aus diesen Werten werden die y- und z-Komponente und der Rollwinkel der Plattformpose bestimmt. Um die Messfähigkeit des 2D-Laserscanners vom zwei dimensionalen zum räumlichen Messen zu erweitern, wurde ein mathematisches Modell mittels einer speziellen Reflektoranordnung entwickelt. Ziel ist die Bestimmung der x-Komponente und des Gierwinkels der Plattformpose. Der Nickwinkel wird vom IMU gemessen. Die Simulation der Plattform wurde in Ruhe und in Bewegung durchgeführt. Die Simulationsergebnisse sind als Empfehlung für den Versuch am Prototyp zu sehen. Vor dem Versuch wurde die passende Sensorschnittstelle gewählt und getestet. Zudem erfolgte die Gestaltung des Sensorkonzepts zur Datenübertragung. Der Treiber für die Sensoren und die Software für die Datenbearbeitung wurden vorbereitet und das vorgeschlagene Verfahren zur Bestimmung der Plattformpose am Prototyp getestet. Im Versuch wurde die translatorische Komponente der Plattformpose mit direkter Messung der Plattformposition validiert. Der Vergleich zeigt, dass die gemessene Plattformpose nicht an gewünschter Stelle liegt. Danach wurde das vorgeschlagene Verfahren zur Bestimmung der Plattformpose während niedriger und hoher Plattformgeschwindigkeit getestet. Das Ergebnis zeigt, dass dieses Verfahren zur Bestimmung der aktuellen Plattformpose geeignet ist. Die oben beschriebenen Forschungsergebnisse zeigen, dass vorgeschlagene Messverfahren sich zur Bestimmung der Plattformpose in Ruhe und in Bewegung eignet. Aufgrund des günstigen Preises ist das vorgeschlagene Messsystem eine vielsprechende Möglichkeit, die in der kommerziellen Anwendung des CABLAR eingesetzt werden kann.The implementation of a Cable Driven Parallel Robot (CDPR) as a commercial product has a promising future due to its energy efficiency and larger workspace compared to conventional parallel manipulators. A prototype of a CDPR for warehouse applications called CABLAR has been developed at the Chair of Mechatronics at the University of Duisburg-Essen (UDE), which aims to develop the CDPR as a commercial product. In order to benchmark the controller and calibrate the robot, for safety reasons, the platform position and orientation (pose) of the CABLAR must be measured. The current reported approaches to determine the platform pose of a cable robot are direct measurement and indirect measurement. An external sensor such as a camera system or laser tracker is used in direct measurement. Meanwhile, indirect measurement is the determination of the platform pose by forward kinematics where the input is from the proprioceptive sensor. However, the camera system is not worth implementing in the commercial product due to its high cost. On the other hand, forward kinematics has drawbacks when the defined parameters are not identical to the actual parameters. The manufacturing tolerance, assembly tolerance or changing the properties and diameter of the cable because of environmental effects (e.g. temperature) and long operation time are the reasons for this and are difficult to avoid. As a result, the actual pose of the platform could deviate from the desired pose. In this thesis, a direct measurement method by combining a 2D laser scanner with an Inertial Measurement Unit (IMU) is proposed. Several flat reflectors are fixed on the left and right of the robot frame with a special pattern design on the upper side. The laser scanner measurement result during the operation of the CABLAR is imitated based on the line-plane intersection according to the gradient projection method. A compensation algorithm aimed at reducing the velocity effect on the measurement result due to platform motion is proposed. The rough value of normal parametrization of each reflector is estimated using the Modified Hough Transform (mHT) from the measurement result. According to the rough value of the normal parametrization, the measurement result is segmented into a dataset corresponding to the left-, right- and upper-side reflectors by Random Sample Consensus (RANSAC). The linear least squares method is applied in order to determine the ne value of the normal parametrization of all segmented data. The y-component, z-component and roll angle of the platform pose are determined from the fine normal parametrization. A mathematical model based on the reflector special pattern design is developed. The goal is to extend the limitation of the 2D laser scanner from plane measurement to become space measurement in order to obtain the x-component and the yaw angle of the platform pose. The pitch angle is measured by the IMU. The CABLAR model is simulated to verify the proposed measurement method for the conditions where the platform is stationary and in motion. According to the simulation results, several points are concluded as the recommendations for the experiment. Before the experiment was conducted, the suitable hardware interface of the sensors was chosen and tested. The system architecture of the data transfer was designed. The software to drive the sensors and to process the measurement data was prepared. In the experiment on the prototype, the translational components of the platform pose were validated with the direct measurement. Meanwhile the rotational components obtained from the proposed method were validated with the measurement result from the IMU. The results show that the platform position deviates from the desired pose. Furthermore, the proposed platform pose measurement method is tested for the platform in low- and high-velocity motion. The results show that the proposed measurement method is able to determine the actual platform pose. Finally, the proposed measurement method is able to determine the platform pose when stationary and in motion. The proposed measurement system is suitable for application in the commercial CABLAR due its low cost compared to the actual reported measurement system

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore