34 research outputs found

    Robust characterization of wireless channel using matching pursuit technique

    Get PDF

    Automatic modulation classification of communication signals

    Get PDF
    The automatic modulation recognition (AMR) plays an important role in various civilian and military applications. Most of the existing AMR algorithms assume that the input signal is only of analog modulation or is only of digital modulation. In blind environments, however, it is impossible to know in advance if the received communication signal is analogue modulated or digitally modulated. Furthermore, it is noted that the applications of the currently existing AMR algorithms designed for handling both analog and digital communication signals are rather restricted in practice. Motivated by this, an AMR algorithm that is able to discriminate between analog communication signals and digital communication signals is developed in this dissertation. The proposed algorithm is able to recognize the concrete modulation type if the input is an analog communication signal and to estimate the number of modulation levels and the frequency deviation if the input is an exponentially modulated digital communication signal. For linearly modulated digital communication signals, the proposed classifier will classify them into one of several nonoverlapping sets of modulation types. In addition, in M-ary FSK (MFSK) signal classification, two classifiers have also been developed. These two classifiers are also capable of providing good estimate of the frequency deviation of a received MFSK signal. For further classification of linearly modulated digital communication signals, it is often necessary to blindly equalize the received signal before performing modulation recognition. This doing generally requires knowing the carrier frequency and symbol rate of the input signal. For this purpose, a blind carrier frequency estimation algorithm and a blind symbol rate estimation algorithm have been developed. The carrier frequency estimator is based on the phases of the autocorrelation functions of the received signal. Unlike the cyclic correlation based estimators, it does not require the transmitted symbols being non-circularly distributed. The symbol rate estimator is based on digital communication signals\u27 cyclostationarity related to the symbol rate. In order to adapt to the unknown symbol rate as well as the unknown excess bandwidth, the received signal is first filtered by using a bank of filters. Symbol rate candidates and their associated confident measurements are extracted from the fourth order cyclic moments of the filtered outputs, and the final estimate of symbol rate is made based on weighted majority voting. A thorough evaluation of some well-known feature based AMR algorithms is also presented in this dissertation

    Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution

    Get PDF
    This dissertation focuses on improving the ability to detect dim stellar objects that are in close proximity to a bright one, through statistical image processing using short exposure images. The goal is to improve the space domain awareness capabilities with the existing infrastructure. Two new algorithms are developed. The first one is through the Neighborhood System Blind Deconvolution where the data functions are separated into the bright object, the neighborhood system, and the background functions. The second one is through the Dimension Reduction Blind Deconvolution, where the object function is represented by the product of two matrices. Both are designed to overcome the photon counting noise and the random and turbulent atmospheric conditions. The performance of the algorithms are compared with that of the Multi-Frame Blind Deconvolution. The new algorithms are tested and validated with computer generated data. The Neighborhood System Blind Deconvolution is also modified to overcome the undersampling effects since it is validated on the undersampled laboratory collected data. Even though the algorithms are designed for ground to space imaging systems, the same concept can be extended for space to space imaging. This research provides two better techniques to improve closely space dim object detection

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Photorealistic retrieval of occluded facial information using a performance-driven face model

    Get PDF
    Facial occlusions can cause both human observers and computer algorithms to fail in a variety of important tasks such as facial action analysis and expression classification. This is because the missing information is not reconstructed accurately enough for the purpose of the task in hand. Most current computer methods that are used to tackle this problem implement complex three-dimensional polygonal face models that are generally timeconsuming to produce and unsuitable for photorealistic reconstruction of missing facial features and behaviour. In this thesis, an image-based approach is adopted to solve the occlusion problem. A dynamic computer model of the face is used to retrieve the occluded facial information from the driver faces. The model consists of a set of orthogonal basis actions obtained by application of principal component analysis (PCA) on image changes and motion fields extracted from a sequence of natural facial motion (Cowe 2003). Examples of occlusion affected facial behaviour can then be projected onto the model to compute coefficients of the basis actions and thus produce photorealistic performance-driven animations. Visual inspection shows that the PCA face model recovers aspects of expressions in those areas occluded in the driver sequence, but the expression is generally muted. To further investigate this finding, a database of test sequences affected by a considerable set of artificial and natural occlusions is created. A number of suitable metrics is developed to measure the accuracy of the reconstructions. Regions of the face that are most important for performance-driven mimicry and that seem to carry the best information about global facial configurations are revealed using Bubbles, thus in effect identifying facial areas that are most sensitive to occlusions. Recovery of occluded facial information is enhanced by applying an appropriate scaling factor to the respective coefficients of the basis actions obtained by PCA. This method improves the reconstruction of the facial actions emanating from the occluded areas of the face. However, due to the fact that PCA produces bases that encode composite, correlated actions, such an enhancement also tends to affect actions in non-occluded areas of the face. To avoid this, more localised controls for facial actions are produced using independent component analysis (ICA). Simple projection of the data onto an ICA model is not viable due to the non-orthogonality of the extracted bases. Thus occlusion-affected mimicry is first generated using the PCA model and then enhanced by accordingly manipulating the independent components that are subsequently extracted from the mimicry. This combination of methods yields significant improvements and results in photorealistic reconstructions of occluded facial actions

    Development of a Novel Methodology for the Identification of VOC Emission Sources in Indoor Environments based on the Material Emission Signatures and Air Samples measured by PTR-MS

    Get PDF
    One of the recent important challenges in the research field of indoor air quality is the identification of indoor Volatile Organic Compound (VOC) emission sources to clearly pinpoint the sources of concern in a field condition. This study represents the first attempt in developing a new technique to find the sources that may be invisible or hidden based on the inspection even of experts when a building with problems of indoor air quality is suspected. The objectives of this study were 1) to determine VOC emission signatures specific to nine typical building materials by using an on-line analytical monitoring device, Proton Transfer Reaction - Mass Spectrometry (PTR-MS), 2) to explore the correlation between the PTR-MS measurements and the measurements of acceptability by human subjects, 3) to develop and evaluate a methodology to identify individual sources of VOC emissions based on the measurements of mixed air samples and the PTR-MS material emission signatures, 4) to determine the long-term variation of VOC emission signatures over time, and 5) to develop a method to account for the long-term variation of emission signatures in the application of the emission source identification method. Samples of nine building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. VOC emissions from each material were measured in a 50-liter small-scale chamber. Chamber air was sampled by PTR-MS to establish a database of emission signatures unique to each individual material. Sorbent tube sampling and TD-GC/MS analysis were also performed to identify the major VOCs emitted and to compare the resulting data with the PTR-MS emission signatures. The data on the acceptability of air quality assessed by human subjects were obtained from a previous experimental study in which the emissions from the same batch of materials were determined under the same area-specific ventilation rates as in the case of the current measurements with PTR-MS. The same task was performed to measure combined emissions from material mixtures for the application and validation of a signal separation methodology and its source identification enhancement by the consideration of long-term emissions. The methodology was developed based on signal processing principles by employing the method of multiple regression least squares (MRLS) and a normalization technique. Source models were employed to track the change of individual material emission signatures by PTR-MS over a long period of time. It is concluded that: 1) PTR-MS can be an effective tool for establishing VOC emission signatures of material types, and there were sufficient correlations (i.e. Correlation coefficient r \u3c -0.92 ) between the PTR-MS measurements and the acceptability of air quality for the nine materials tested when the sum of selected major individual VOC odor indices was used to represent the emission level measured by PTR-MS; 2) the proposed method for source identification could identify the individual sources at high success rates under laboratory conditions with two, three, five and seven materials present; and 3) the long-term (over nine months) variation of emission factors of the tested materials could be well represented by an empirical power-law model or a mechanistic diffusion based model, and the model coefficients could be estimated based on relatively a short-term set of emission measurements (i.e. within 28 days). The source models could also be used to predict the variation of material emission signatures, which could in turn be used for source identification. Further experiments and investigation are needed to apply the presented source identification method under real field conditions
    corecore