22 research outputs found

    Intelligence in 5G networks

    Get PDF
    Over the past decade, Artificial Intelligence (AI) has become an important part of our daily lives; however, its application to communication networks has been partial and unsystematic, with uncoordinated efforts that often conflict with each other. Providing a framework to integrate the existing studies and to actually build an intelligent network is a top research priority. In fact, one of the objectives of 5G is to manage all communications under a single overarching paradigm, and the staggering complexity of this task is beyond the scope of human-designed algorithms and control systems. This thesis presents an overview of all the necessary components to integrate intelligence in this complex environment, with a user-centric perspective: network optimization should always have the end goal of improving the experience of the user. Each step is described with the aid of one or more case studies, involving various network functions and elements. Starting from perception and prediction of the surrounding environment, the first core requirements of an intelligent system, this work gradually builds its way up to showing examples of fully autonomous network agents which learn from experience without any human intervention or pre-defined behavior, discussing the possible application of each aspect of intelligence in future networks

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Predictive smart relaying schemes for decentralized wireless systems

    Get PDF
    Recent developments in decentralized wireless networks make the technology potentially deployable in an extremely broad scenarios and applications. These include mobile Internet of Things (IoT) networks, smart cities, future innovative communication systems with multiple aerial layer flying network platforms and other advanced mobile communication networks. The approach also could be the solution for traditional operated mobile network backup plans, balancing traffic flow, emergency communication systems and so on. This thesis reveals and addresses several issues and challenges in conventional wireless communication systems, particular for the cases where there is a lack of resources and the disconnection of radio links. There are two message routing plans in the data packet store, carry and forwarding form are proposed, known as KaFiR and PaFiR. These employ the Bayesian filtering approach to track and predict the motion of surrounding portable devices and determine the next layer among candidate nodes. The relaying strategies endow smart devices with the intelligent capability to optimize the message routing path and improve the overall network performance with respect to resilience, tolerance and scalability. The simulation and test results present that the KaFiR routing protocol performs well when network subscribers are less mobile and the relaying protocol can be deployed on a wide range of portable terminals as the algorithm is rather simple to operate. The PaFiR routing strategy takes advantages of the Particle Filter algorithm, which can cope with complex network scenarios and applications, particularly when unmanned aerial vehicles are involved as the assisted intermediate layers. When compared with other existing DTN routing protocols and some of the latest relaying plans, both relaying protocols deliver an excellent overall performance for the key wireless communication network evolution metrics, which shows the promising future for this brand new research direction. Further extension work directions based on the tracking and prediction methods are suggested and reviewed. Future work on some new applications and services are also addressed
    corecore