29,239 research outputs found

    Enhancing the diversity of genetic algorithm for improved feature selection

    Full text link
    Genetic algorithm (GA) is one of the most widely used population-based evolutionary search algorithms. One of the challenging optimization problems in which GA has been extensively applied is feature selection. It aims at finding an optimal small size subset of features from the original large feature set. It has been found that the main limitation of the traditional GA-based feature selection is that it tends to get trapped in local minima, a problem known as premature convergence. A number of implementations are presented in the literature to overcome this problem based on fitness scaling, genetic operator modification, boosting genetic population diversity, etc. This paper presents a new modified genetic algorithm based on enhanced population diversity, parents' selection and improved genetic operators. Practical results indicate the significance of the proposed GA variant in comparison to many other algorithms from the literature on different datasets. ©2010 IEEE

    Ensemble Learning for Free with Evolutionary Algorithms ?

    Get PDF
    Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles

    Genetic Transfer or Population Diversification? Deciphering the Secret Ingredients of Evolutionary Multitask Optimization

    Full text link
    Evolutionary multitasking has recently emerged as a novel paradigm that enables the similarities and/or latent complementarities (if present) between distinct optimization tasks to be exploited in an autonomous manner simply by solving them together with a unified solution representation scheme. An important matter underpinning future algorithmic advancements is to develop a better understanding of the driving force behind successful multitask problem-solving. In this regard, two (seemingly disparate) ideas have been put forward, namely, (a) implicit genetic transfer as the key ingredient facilitating the exchange of high-quality genetic material across tasks, and (b) population diversification resulting in effective global search of the unified search space encompassing all tasks. In this paper, we present some empirical results that provide a clearer picture of the relationship between the two aforementioned propositions. For the numerical experiments we make use of Sudoku puzzles as case studies, mainly because of their feature that outwardly unlike puzzle statements can often have nearly identical final solutions. The experiments reveal that while on many occasions genetic transfer and population diversity may be viewed as two sides of the same coin, the wider implication of genetic transfer, as shall be shown herein, captures the true essence of evolutionary multitasking to the fullest.Comment: 7 pages, 6 figure

    Inheritance-Based Diversity Measures for Explicit Convergence Control in Evolutionary Algorithms

    Full text link
    Diversity is an important factor in evolutionary algorithms to prevent premature convergence towards a single local optimum. In order to maintain diversity throughout the process of evolution, various means exist in literature. We analyze approaches to diversity that (a) have an explicit and quantifiable influence on fitness at the individual level and (b) require no (or very little) additional domain knowledge such as domain-specific distance functions. We also introduce the concept of genealogical diversity in a broader study. We show that employing these approaches can help evolutionary algorithms for global optimization in many cases.Comment: GECCO '18: Genetic and Evolutionary Computation Conference, 2018, Kyoto, Japa

    On the Effectiveness of Genetic Search in Combinatorial Optimization

    Full text link
    In this paper, we study the efficacy of genetic algorithms in the context of combinatorial optimization. In particular, we isolate the effects of cross-over, treated as the central component of genetic search. We show that for problems of nontrivial size and difficulty, the contribution of cross-over search is marginal, both synergistically when run in conjunction with mutation and selection, or when run with selection alone, the reference point being the search procedure consisting of just mutation and selection. The latter can be viewed as another manifestation of the Metropolis process. Considering the high computational cost of maintaining a population to facilitate cross-over search, its marginal benefit renders genetic search inferior to its singleton-population counterpart, the Metropolis process, and by extension, simulated annealing. This is further compounded by the fact that many problems arising in practice may inherently require a large number of state transitions for a near-optimal solution to be found, making genetic search infeasible given the high cost of computing a single iteration in the enlarged state-space.NSF (CCR-9204284

    Random convolution ensembles

    Get PDF
    A novel method for creating diverse ensembles of image classifiers is proposed. The idea is that, for each base image classifier in the ensemble, a random image transformation is generated and applied to all of the images in the labeled training set. The base classifiers are then learned using features extracted from these randomly transformed versions of the training data, and the result is a highly diverse ensemble of image classifiers. This approach is evaluated on a benchmark pedestrian detection dataset and shown to be effective

    A convergence acceleration operator for multiobjective optimisation

    Get PDF
    A novel multiobjective optimisation accelerator is introduced that uses direct manipulation in objective space together with neural network mappings from objective space to decision space. This operator is a portable component that can be hybridized with any multiobjective optimisation algorithm. The purpose of this Convergence Acceleration Operator (CAO) is to enhance the search capability and the speed of convergence of the host algorithm. The operator acts directly in objective space to suggest improvements to solutions obtained by a multiobjective evolutionary algorithm (MOEA). These suggested improved objective vectors are then mapped into decision variable space and tested. The CAO is incorporated with two leading MOEAs, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2) and tested. Results show that the hybridized algorithms consistently improve the speed of convergence of the original algorithm whilst maintaining the desired distribution of solutions
    corecore