466 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Wireless Sensor Technology Selection for I4.0 Manufacturing Systems

    Get PDF
    The term smart manufacturing has surfaced as an industrial revolution in Germany known as Industry 4.0 (I4.0); this revolution aims to help the manufacturers adapt to turbulent market trends. Its main scope is implementing machine communication, both vertically and horizontally across the manufacturing hierarchy through Internet of things (IoT), technologies and servitization concepts. The main objective of this research is to help manufacturers manage the high levels of variety and the extreme turbulence of market trends through developing a selection tool that utilizes Analytic Hierarchy Process (AHP) techniques to recommend a suitable industrial wireless sensor network (IWSN) technology that fits their manufacturing requirements.In this thesis, IWSN technologies and their properties were identified, analyzed and compared to identify their potential suitability for different industrial manufacturing system application areas. The study included the identification and analysis of different industrial system types, their application areas, scenarios and respective communication requirements. The developed tool’s sensitivity is also tested to recommend different IWSN technology options with changing influential factors. Also, a prioritizing protocol is introduced in the case where more than one IWSN technology options are recommended by the AHP tool.A real industrial case study with the collaboration of SPM Automation Inc. is presented, where the industrial systems’ class, communication traffic types, and communication requirements were analyzed to recommend a suitable IWSN technology that fits their requirements and assists their shift towards I4.0 through utilizing AHP techniques. The results of this research will serve as a step forward, in the transformation process of manufacturing towards a more digitalized and better connected cyber-physical systems; thus, enhancing manufacturing attributes such as flexibility, reconfigurability, scalability and easing the shift towards implementing I4.0

    Adaptive Capacity Management in Bluetooth Networks

    Get PDF

    An Inter-Piconet Scheduling Algorithm for Bluetooth Scatternets

    Get PDF

    Wireless personal area networks and free-space optical links

    Get PDF
    This thesis is concerned with the link layer design of indoor (IrDA) and outdoor infrared links, as well as the performance of the higher layers of two major Wireless Personal Area Network (WPAN) technologies: IrDA and Bluetooth. Recent advancesin wireless technology have made it possible to put networking technology into small portable devices. During the past few years, WPAN technologies have been the subject of a tremendous growth both in research and development. Although many studies have been conducted on wireless links to address different issues on physical and link layers, wireless communications are still characterised by high error rates becauseof the frequently changing medium. On the other hand, performance studies of the higher layers are also very important. In this thesis, for the first time, a comprehensivestudy of the interactions betweenthe higher and the lower protocol layers of IrDA and Bluetooth has been carried out to improve the overall system performance. Mathematical models for the link layers are introduced for the infrared systems: infrared data association (IrDA) and free space optics (FSO). A model for the IrDA (indoor infrared) link layer is developed by considering the presence of bit errors. Based on this model, the effect of propagation delay on the link through put is investigated. An optimization study is also carried out to maximize the link throughput. FSO (outdoor infrared) links are often characterized by high speed and long link distance. A mathematical model for the FSO link layer is also developed. Significant improvement of the link throughput is achieved by optimizing the link parameters. Based on the link layer model, the performance of the IrDA higher layers (transport, session and application layers) is investigated. First, a mathematical model of TinyTP (transport protocol) is elaborated and subsequently verified by simulations. The effects of multiple connections and available buffer size are investigated. The throughput at the TinyTP level is optimized for different buffer sizes. Subsequently, the session layer, including Object Exchange (OBEX) and IrDA Burst (IrBurst) protocols, is studied and modelled. The derived mathematical model is verified by simulation results. A set of protocol parameters and hardware selection guidelines is proposed to optimize the overall system performance while also keeping the hardware requirementto a minimum. Finally, two rapidly developing IrDA applications, IrDA financial messaging(IrFM) and IrDA simple connection (IrSC), are studied. IrFM is investigated by comparison to other digital payment technologies, while the performance of IrSC is compared in two different technical approaches. In order to improve the throughput and minimize the transmission delay for the Bluetooth data applications, a systematic analysis is carried out for the Bluetooth Logical Link Control and Adaptation Layer Protocol (L2CAP). L2CAP is layered above the Bluetooth link layer (Baseband) and is essential to Bluetooth data applications. A simple and intuitive mathematical model is developed to derive simple equations for the L2CAP throughput and the average packet delay. The derived throughput equation, which is validated by simulations, takes into account bit errors as well as packet retry limits. Finally, a number of easy-to-implement performance enhancement schemes are proposed, including the optimum use of the protocol parameters
    • …
    corecore