1,291 research outputs found

    Cross-View Hierarchy Network for Stereo Image Super-Resolution

    Full text link
    Stereo image super-resolution aims to improve the quality of high-resolution stereo image pairs by exploiting complementary information across views. To attain superior performance, many methods have prioritized designing complex modules to fuse similar information across views, yet overlooking the importance of intra-view information for high-resolution reconstruction. It also leads to problems of wrong texture in recovered images. To address this issue, we explore the interdependencies between various hierarchies from intra-view and propose a novel method, named Cross-View-Hierarchy Network for Stereo Image Super-Resolution (CVHSSR). Specifically, we design a cross-hierarchy information mining block (CHIMB) that leverages channel attention and large kernel convolution attention to extract both global and local features from the intra-view, enabling the efficient restoration of accurate texture details. Additionally, a cross-view interaction module (CVIM) is proposed to fuse similar features from different views by utilizing cross-view attention mechanisms, effectively adapting to the binocular scene. Extensive experiments demonstrate the effectiveness of our method. CVHSSR achieves the best stereo image super-resolution performance than other state-of-the-art methods while using fewer parameters. The source code and pre-trained models are available at https://github.com/AlexZou14/CVHSSR.Comment: 10 pages, 7 figures, CVPRW, NTIRE202

    Map the distribution of glaciofluvial deposits and associated glacial landforms

    Get PDF
    There are no author-identified significant results in this report

    A New Dataset and Transformer for Stereoscopic Video Super-Resolution

    Full text link
    Stereo video super-resolution (SVSR) aims to enhance the spatial resolution of the low-resolution video by reconstructing the high-resolution video. The key challenges in SVSR are preserving the stereo-consistency and temporal-consistency, without which viewers may experience 3D fatigue. There are several notable works on stereoscopic image super-resolution, but there is little research on stereo video super-resolution. In this paper, we propose a novel Transformer-based model for SVSR, namely Trans-SVSR. Trans-SVSR comprises two key novel components: a spatio-temporal convolutional self-attention layer and an optical flow-based feed-forward layer that discovers the correlation across different video frames and aligns the features. The parallax attention mechanism (PAM) that uses the cross-view information to consider the significant disparities is used to fuse the stereo views. Due to the lack of a benchmark dataset suitable for the SVSR task, we collected a new stereoscopic video dataset, SVSR-Set, containing 71 full high-definition (HD) stereo videos captured using a professional stereo camera. Extensive experiments on the collected dataset, along with two other datasets, demonstrate that the Trans-SVSR can achieve competitive performance compared to the state-of-the-art methods. Project code and additional results are available at https://github.com/H-deep/Trans-SVSR/Comment: Conference on Computer Vision and Pattern Recognition (CVPR 2022

    Coordinates and maps of the Apollo 17 landing site

    Get PDF
    We carried out an extensive cartographic analysis of the Apollo 17 landing site and determined and mapped positions of the astronauts, their equipment, and lunar landmarks with accuracies of better than ±1 m in most cases. To determine coordinates in a lunar body‐fixed coordinate frame, we applied least squares (2‐D) network adjustments to angular measurements made in astronaut imagery (Hasselblad frames). The measured angular networks were accurately tied to lunar landmarks provided by a 0.5 m/pixel, controlled Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) orthomosaic of the entire Taurus‐Littrow Valley. Furthermore, by applying triangulation on measurements made in Hasselblad frames providing stereo views, we were able to relate individual instruments of the Apollo Lunar Surface Experiment Package (ALSEP) to specific features captured in LROC imagery and, also, to determine coordinates of astronaut equipment or other surface features not captured in the orbital images, for example, the deployed geophones and Explosive Packages (EPs) of the Lunar Seismic Profiling Experiment (LSPE) or the Lunar Roving Vehicle (LRV) at major sampling stops. Our results were integrated into a new LROC NAC‐based Apollo 17 Traverse Map and also used to generate a series of large‐scale maps of all nine traverse stations and of the ALSEP area. In addition, we provide crater measurements, profiles of the navigated traverse paths, and improved ranges of the sources and receivers of the active seismic experiment LSPE
    corecore