176 research outputs found

    Hybrid semantic-document models

    Get PDF
    This thesis presents the concept of hybrid semantic-document models to aid information management when using standards for complex technical domains such as military data communication. These standards are traditionally text based documents for human interpretation, but prose sections can often be ambiguous and can lead to discrepancies and subsequent implementation problems. Many organisations produce semantic representations of the material to ensure common understanding and to exploit computer aided development. In developing these semantic representations, no relationship is maintained to the original prose. Maintaining relationships between the original prose and the semantic model has key benefits, including assessing conformance at a semantic level, and enabling original content authors to explicitly define their intentions, thus reducing ambiguity and facilitating computer aided functionality. Through the use of a case study method based on the military standard MIL-STD-6016C, a framework of relationships is proposed. These relationships can integrate with common document modelling techniques and provide the necessary functionality to allow semantic content to be mapped into document views. These relationships are then generalised for applicability to a wider context. Additionally, this framework is coupled with a templating approach which, for repeating sections, can improve consistency and further enhance quality. A reflective approach to model driven web rendering is presented and evaluated. This reflective approach uses self-inspection at runtime to read directly from the model, thus eliminating the need for any generative processes which result in data duplication across source used for different purpose

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    CON-INFO: A Context-based Methodology for Designing and Assessing the Quality of Adaptable MUIs in Healthcare Applications

    Get PDF
    Mobile technology is an integral part of the modern healthcare environment. The mobile user interface (MUI) serves as the bridge between the application and healthcare professionals. It is important that the physician be able to easily express his needs on the MUI and correctly interpret the information displayed. However, there are many challenges that face the designer in designing and developing context-sensitive MUIs in this environment. The adaptability of the MUI is considered to be one of the most important issues to address. According to the World Health Organization (WHO), MUI adaptability is a major problem in the healthcare context. For the designer, the hope is that new technologies will be developed, such as mobile devices adaptable to different environments, to enable customization of the application to the user’s context. In this thesis, we propose a new methodology for designing a context-based adaptable MUI for healthcare applications. This methodology offers a new approach to automated MUI context adaptation, and provides a solution for both the provider (designer) of the healthcare application and the consumer (physician). New techniques for adapting MUIs offer new opportunities for the MUI designer to maximize the benefits of mobile health technology by providing the best possible way for healthcare professionals to perform their tasks efficiently and effectively. The proposed methodology is based on research contributions in four areas: (1) a new quality-in-use measurement model for validation purposes; (2) user stereotype modeling with a set of context descriptors, which formalize the domain expertise of the users; (3) context information modeling; and (4) use of the decision table technique to adapt the MUI features based on the context and the user stereotypes. The proposed quality-in-use model is inspired by the ISO/IEC 25010 and ISO/IEC 25022 international standards and adapted to healthcare applications. The first contribution is used in validating the quality-in-use of a software product developed according to the CON-INFO methodology, and the last three contributions are linked to form a methodology for development. The MUI features adapted to the needs of healthcare professionals have been implemented on the iPhone™ for validation purposes. An example of software for medical application is the Phoenix Health Information System (PHIS), which is in use at King Abdulaziz University Hospital (KAUH). PHIS2 is an updated desktop version developed based on Human-Computer Interaction (HCI) principles. A new mobile-based version of PHIS2 (PHIS2-M) has since been introduced, to make PHIS accessible from a mobile-based platform. The proposed context-based and rule-based approach for MUI feature adaptability resulted in a new version of PHIS2-M – PHIS2-MA (MA stands for mobile adaptation). This thesis validates the proposed methodology and clearly demonstrates its usefulness, providing details of the four empirical studies conducted with the end-users (physicians) in a real environment at the KAUH. The results of the formal studies reveal that our CON-INFO methodology for designing an adaptable MUI led to improvements to the current application and allowed researchers to test successive versions of the ‘final’ application

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    MIDAS: Multi-device Integrated Dynamic Activity Spaces

    Get PDF
    Mobile phones, tablet computers, laptops, desktops, and large screen displays are increasingly available to individuals for information access, often simultaneously. Dominant content access protocols, such as HTTP/1.1, do not take advantage of this device multiplicity and support information access from single devices only. Changing devices means restarting an information session. Using devices in conjunction with each other poses several challenges, which include the presentation of content on devices with diverse form factors and propagation of the content changes across these devices. In this dissertation, I report on the design and implementation of MIDAS - architecture and a prototype system for multi-device presentations. I propose a framework, called 12C, for characterizing multi-device systems and evaluate MIDAS within this framework. MIDAS is designed as a middleware that can work with multiple client-server architectures, such as the Web and context-aware Trellis, a non-Web hypertext system. It presents information content simultaneously on devices with diverse characteristics without requiring sensor-enhanced environments. The system adapts content elements for optimal presentation on the target device while also striving to retain fidelity with the original form from a human perceptual perspective. MIDAS reconfigures its presentation in response to user actions, availability of devices, and environmental context, such as a user's location or the time of day. I conducted a pilot study that explored human perception of similarity when image attributes such as size and color depth are modified in the process of presenting images on different devices. The results indicated that users tend to prefer scaling of images to color-depth reduction but gray scaling of images is preferable to either modification. Not all images scale equally gracefully; those dominated by natural elements or manmade structures scale exceptionally well. Images that depict recognizable human faces or textual elements should be scaled only to an extent that these features retain their integrity. Attributes of the 12C framework describe aspects of multi-device systems that include infrastructure, presentation, interaction, interface, and security. Based on these criteria, MIDAS is a flexible infrastructure, which lends itself to several content distribution and interaction strategies by separating client- and server-side configuration

    Leveraging the web as a ubiquitous platform for adaptive multi-device applications

    Get PDF

    Ontology based contextualization and context constraints management in web service processes

    Get PDF
    The flexibility and dynamism of service-based applications impose shifting the validation process to runtime; therefore, runtime monitoring of dynamic features attached to service-based systems is becoming an important direction of research that motivated the definition of our work. We propose an ontology based contextualization and a framework and techniques for managing context constraints in a Web service process for dynamic requirements validation monitoring at process runtime. Firstly, we propose an approach to define and model dynamic service context attached to composition and execution of services in a service process at run-time. Secondly, managing context constraints are defined in a framework, which has three main processes for context manipulation and reasoning, context constraints generation, and dynamic instrumentation and validation monitoring of context constraints. The dynamic requirements attached to service composition and execution are generated as context constraints. The dynamic service context modeling is investigated based on empirical analysis of application scenarios in the classical business domain and analysing previous models in the literature. The orientation of context aspects in a general context taxonomy is considered important. The Ontology Web Language (OWL) has many merits on formalising dynamic service context such as shared conceptualization, logical language support for composition and reasoning, XML based interoperability, etc. XML-based constraint representation is compatible with Web service technologies. The analysis of complementary case study scenarios and expert opinions through a survey illustrate the validity and completeness of our context model. The proposed techniques for context manipulation, context constraints generation, instrumentation and validation monitoring are investigated through a set of experiments from an empirical evaluation. The analytical evaluation is also used to evaluate algorithms. Our contributions and evaluation results provide a further step towards developing a highly automated dynamic requirements management system for service processes at process run-time

    From legal contracts to smart contracts and back again: Towards an automated approach

    Get PDF
    Blockchain smart contracts, programs with the potential to automate transactions and beyond, have gained tremendous popularity over the past years. Central to the original of smart contracts is that every computable clause of a contract or agreement is encoded into arbitrary computer logic with the aim of coding this logic into computer programs, and let the program decide and execute what happens during the contract's life span. The term smart legal contract has been coined to describe smart contracts that aim to capture legally binding agreements between parties. This dissertation presents a method to facilitate the creation of smart legal contracts that constitute a legally binding contract and that can (partially) self-enforce their terms and conditions within that contract, regardless of the blockchain platform. Understanding how blockchain technology works is pivotal to grapple the ramifications of this choice for smart contracts. Chapter 2 presents an overview of the literature on blockchain to delineate architectural perspectives on the technology, and to define its properties. Finally, the chapter points out the current challenges for the technology and gaps in literature. In Chapter 3, a background on smart contracts will be provided using a motivational example. Chapter 4 expounds the research methodology, the research paradigm adopted for the research, and the philosophy underpinning the method called Model Driven Architecture. Following, in Chapter 5 a domain model for smart legal contracts is presented. The chapter demonstrates how the contents of a legal contract could be captured in a model using a motivational example. Chapter 6 is devoted to describing the models that can be employed to write smart contracts. The chapter presents a platform specific model for the Ethereum and Hyperledger Fabric blockchain platforms. A platform agnostic model for blockchain technology is thereafter presented that captures the commonalities between these platforms. Chapter 7 discusses how the main research question is addressed. Derived from the insights of the discussion some opportunities for future research are discussed. Finally, Chapter 8 concludes the dissertation

    Designing Emergency Response Dispatch Systems for Better Dispatcher Performance

    Get PDF
    Emergency response systems are a relatively new and important area of research in the information systems community. While there is a growing body of literature in this research stream, human-computer interaction (HCI) issues concerning the design of emergency response system interfaces have received limited attention. Emergency responders often work in time pressured situations and depend on fast access to key information. One of the problems studied in HCI research is the design of interfaces to improve user information selection and processing performance. Based on cue-summation theory and research findings on parallel processing, associative processing, and hemispheric differences in information processing, this study proposes that information selection of target information in an emergency response dispatch application can be improved by using supplementary cues. Color-coding and sorting are proposed as relevant cues that can improve processing performance by providing prioritization heuristics. An experimental emergency response dispatch application is developed, and user performance is tested under conditions of varying complexity and time pressure. The results suggest that supplementary cues significantly improve performance, with better results often obtained when both cues are used. Additionally, the use of these cues becomes more beneficial as time pressure and task complexity increase
    • …
    corecore