35 research outputs found

    Reverse Docking, Molecular Docking, Absorption, Distribution, and Toxicity Prediction of Artemisinin as an Anti-diabetic Candidate

    Get PDF
    Aldose reductase is an enzyme that catalyzes one of the steps in the sorbitol (polyol) pathway that is responsible for fructose formation from glucose. In diabetes, aldose reductase activity increases as the glucose concentration increases. The purpose of this research was to identify and develop the use of artemisinin as an anti-diabetic candidate through in silico studies, including reverse docking, receptor analysis, molecular docking, drug scan, absorption, and distributions and toxicity prediction of artemisinin. Based on the results, we conclude that artemisinin can be used as an anti-diabetic candidate through inhibition of aldose reductase

    Integrative Systems Approaches Towards Brain Pharmacology and Polypharmacology

    Get PDF
    Polypharmacology is considered as the future of drug discovery and emerges as the next paradigm of drug discovery. The traditional drug design is primarily based on a “one target-one drug” paradigm. In polypharmacology, drug molecules always interact with multiple targets, and therefore it imposes new challenges in developing and designing new and effective drugs that are less toxic by eliminating the unexpected drug-target interactions. Although still in its infancy, the use of polypharmacology ideas appears to already have a remarkable impact on modern drug development. The current thesis is a detailed study on various pharmacology approaches at systems level to understand polypharmacology in complex brain and neurodegnerative disorders. The research work in this thesis focuses on the design and construction of a dedicated knowledge base for human brain pharmacology. This pharmacology knowledge base, referred to as the Human Brain Pharmacome (HBP) is a unique and comprehensive resource that aggregates data and knowledge around current drug treatments that are available for major brain and neurodegenerative disorders. The HBP knowledge base provides data at a single place for building models and supporting hypotheses. The HBP also incorporates new data obtained from similarity computations over drugs and proteins structures, which was analyzed from various aspects including network pharmacology and application of in-silico computational methods for the discovery of novel multi-target drug candidates. Computational tools and machine learning models were developed to characterize protein targets for their polypharmacological profiles and to distinguish indications specific or target specific drugs from other drugs. Systems pharmacology approaches towards drug property predictions provided a highly enriched compound library that was virtually screened against an array of network pharmacology based derived protein targets by combined docking and molecular dynamics simulation workflows. The developed approaches in this work resulted in the identification of novel multi-target drug candidates that are backed up by existing experimental knowledge, and propose repositioning of existing drugs, that are undergoing further experimental validations

    Molecular Science for Drug Development and Biomedicine

    Get PDF
    With the avalanche of biological sequences generated in the postgenomic age, molecular science is facing an unprecedented challenge, i.e., how to timely utilize the huge amount of data to benefit human beings. Stimulated by such a challenge, a rapid development has taken place in molecular science, particularly in the areas associated with drug development and biomedicine, both experimental and theoretical. The current thematic issue was launched with the focus on the topic of “Molecular Science for Drug Development and Biomedicine”, in hopes to further stimulate more useful techniques and findings from various approaches of molecular science for drug development and biomedicine

    Computational Analysis of Structure-Activity Relationships : From Prediction to Visualization Methods

    Get PDF
    Understanding how structural modifications affect the biological activity of small molecules is one of the central themes in medicinal chemistry. By no means is structure-activity relationship (SAR) analysis a priori dependent on computational methods. However, as molecular data sets grow in size, we quickly approach our limits to access and compare structures and associated biological properties so that computational data processing and analysis often become essential. Here, different types of approaches of varying complexity for the analysis of SAR information are presented, which can be applied in the context of screening and chemical optimization projects. The first part of this thesis is dedicated to machine-learning strategies that aim at de novo ligand prediction and the preferential detection of potent hits in virtual screening. High emphasis is put on benchmarking of different strategies and a thorough evaluation of their utility in practical applications. However, an often claimed disadvantage of these prediction methods is their "black box" character because they do not necessarily reveal which structural features are associated with biological activity. Therefore, these methods are complemented by more descriptive SAR analysis approaches showing a higher degree of interpretability. Concepts from information theory are adapted to identify activity-relevant structure-derived descriptors. Furthermore, compound data mining methods exploring prespecified properties of available bioactive compounds on a large scale are designed to systematically relate molecular transformations to activity changes. Finally, these approaches are complemented by graphical methods that primarily help to access and visualize SAR data in congeneric series of compounds and allow the formulation of intuitive SAR rules applicable to the design of new compounds. The compendium of SAR analysis tools introduced in this thesis investigates SARs from different perspectives

    Molecular Docking: Metamorphosis in Drug Discovery

    Get PDF
    Molecular docking is recognized a part of computer-aided drug design that is mostly used in medicinal chemistry. It has proven to be an effective, quick, and low-cost technique in both scientific and corporate contexts. It helps in rationalizing the ligands activity towards a target to perform structure-based drug design (SBDD). Docking assists the revealing of novel compound of therapeutic interest, forecasting ligand-protein interaction at a molecular basis and delineating structure activity relationships (SARs). Molecular docking acts as a boon to identify promising agents in emergence of diseases which endangering the human health. In this chapter, we engrossed on the techniques, types, opportunities, challenges and success stories of molecular docking in drug development

    In silico strategies to study polypharmacology of G-protein-coupled receptors

    Get PDF
    The development of drugs that simultaneously target multiple receptors in a rational way (i.e., 'magic shotguns') is regarded as a promising approach for drug discovery to treat complex, multi-factorial and multi-pathogenic diseases. My major goal is to develop and employ different computational approaches towards the rational design of drugs with selective polypharmacology towards guanine nucleotide-binding protein (G-protein)-coupled receptors (GPCRs) to treat central nervous system diseases. Our methodologies rely on the advances in chemocentric informatics and chemogenomics to generate experimentally testable hypotheses that are derived by fusing independent lines of evidence. We posit that such hypothesis fusion approach allows us to improve the overall success rates of in silico lead identification efforts. We have developed an integrated computational approach that combines Quantitative Structure-Activity Relationships (QSAR) modeling, model-based virtual screening (VS), gene expression analysis and mining of the biological literature for drug discovery. The dissertation research described herein is focused on: (1) The development of robust data-driven Quantitative Structure-Activity Relationship (QSAR) models of single target GPCR datasets that will amount to the compendium of GPCR predictors: the GPCR QSARome; (2) The development of robust data-driven QSAR models for families of GPCRs and other trans-membrane molecular targets (i.e., sigma receptors) and the application of models as virtual screening tools for the quick prioritization of compounds for biological testing across receptor families; (3) The development of novel integrative chemocentric informatics approaches to predict receptor-mediated clinical effects of chemicals. Results indicated that our computational efforts to establish a compendium of computational predictors and devise an integrative chemocentric informatics approach to study polypharmacology in silico will eventually lead to useful and reliable tools aimed at identifying and enriching chemical libraries with compounds that have the desired activities for more than one molecular target of interest

    Conceptions of Potency, Purity, and Synergy-by-Design

    Get PDF
    Sowa Rigpa institutions and practitioners have growing interest in examining and legitimizing Sowa Rigpa formulas vis-à-vis pharmacological research methods, seeking scientific validation of what they view as ‘potency’ and ‘purity’ for their formulas. Likewise, the pharmacology researchers have demonstrated renewed interest in herbal medical traditions in mining for new drugs to address resistance, toxicity, and optimize what they view as ‘potency’ and ‘purity.’ However, differing conceptualizations emerge when the pharmacological drug discovery process is examined to determine what is being analyzed, how it is doing so, and what assumptions underlie such methods. Whether a formula is ‘active,’ ‘toxic’ or ‘effective’ hinges on assumptions, processes, and methods that typically have low fidelity to how Sowa Rigpa formulations function from the Tibetan tradition’s perspective and are actually administered to patients. This paper argues that standard mainstream biochemical pharmacology screening methods may not be suitable for analyzing Sowa Rigpa formulas, as they are traditionally compounded and understood to function in concert with multiple physiological pathways, rather than one specific target. We examine the pharmaceutical research processes to identify points of adherence and divergence with conceptions of ‘potency’ and ‘purity' in Tibetan medical theory, and believe pharmacological research institutions will be receptive to traditional Sowa Rigpa menjor (sman sbyor), or ‘medicine compounding,’ theory due to benefits it could provide biomedical drug discovery via complementary understandings of compound synergy and distinctly different concepts of toxicity and purity. Accordingly, we suggest that efficacy, activity and safety of Tibetan medicinal formulas will be more accurately assessed by retaining fidelity to its own conceptions of potency and purity

    Machine Learning Applications for Drug Repurposing

    Full text link
    The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected until a very late stage of the drug discovery, where the discovery of drug-induced side effects and potential drug resistance can decrease the value of the drug and even completely invalidate the use of the drug. Thus, a new paradigm in drug discovery is needed. Structural systems pharmacology is a new paradigm in drug discovery that the drug activities are studied by data-driven large-scale models with considerations of the structures and drugs. Structural systems pharmacology will model, on a genome scale, the energetic and dynamic modifications of protein targets by drug molecules as well as the subsequent collective effects of drug-target interactions on the phenotypic drug responses. To date, however, few experimental and computational methods can determine genome-wide protein-ligand interaction networks and the clinical outcomes mediated by them. As a result, the majority of proteins have not been charted for their small molecular ligands; we have a limited understanding of drug actions. To address the challenge, this dissertation seeks to develop and experimentally validate innovative computational methods to infer genome-wide protein-ligand interactions and multi-scale drug-phenotype associations, including drug-induced side effects. The hypothesis is that the integration of data-driven bioinformatics tools with structure-and-mechanism-based molecular modeling methods will lead to an optimal tool for accurately predicting drug actions and drug associated phenotypic responses, such as side effects. This dissertation starts by reviewing the current status of computational drug discovery for complex diseases in Chapter 1. In Chapter 2, we present REMAP, a one-class collaborative filtering method to predict off-target interactions from protein-ligand interaction network. In our later work, REMAP was integrated with structural genomics and statistical machine learning methods to design a dual-indication polypharmacological anticancer therapy. In Chapter 3, we extend REMAP, the core method in Chapter 2, into a multi-ranked collaborative filtering algorithm, WINTF, and present relevant mathematical justifications. Chapter 4 is an application of WINTF to repurpose an FDA-approved drug diazoxide as a potential treatment for triple negative breast cancer, a deadly subtype of breast cancer. In Chapter 5, we present a multilayer extension of REMAP, applied to predict drug-induced side effects and the associated biological pathways. In Chapter 6, we close this dissertation by presenting a deep learning application to learn biochemical features from protein sequence representation using a natural language processing method
    corecore