33,578 research outputs found

    A core ontology for business process analysis

    Get PDF
    Business Process Management (BPM) aims at supporting the whole life-cycle necessary to deploy and maintain business processes in organisations. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. However, the degree of automation currently achieved cannot support the level of adaptation required by businesses. Initial steps have been performed towards including some sort of automated reasoning within Business Process Analysis (BPA) but this is typically limited to using taxonomies. We present a core ontology aimed at enhancing the state of the art in BPA. The ontology builds upon a Time Ontology and is structured around the process, resource, and object perspectives as typically adopted when analysing business processes. The ontology has been extended and validated by means of an Events Ontology and an Events Analysis Ontology aimed at capturing the audit trails generated by Process-Aware Information Systems and deriving additional knowledge

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Semantic process mining tools: core building blocks

    Get PDF
    Process mining aims at discovering new knowledge based on information hidden in event logs. Two important enablers for such analysis are powerful process mining techniques and the omnipresence of event logs in today's information systems. Most information systems supporting (structured) business processes (e.g. ERP, CRM, and workflow systems) record events in some form (e.g. transaction logs, audit trails, and database tables). Process mining techniques use event logs for all kinds of analysis, e.g., auditing, performance analysis, process discovery, etc. Although current process mining techniques/tools are quite mature, the analysis they support is somewhat limited because it is purely based on labels in logs. This means that these techniques cannot benefit from the actual semantics behind these labels which could cater for more accurate and robust analysis techniques. Existing analysis techniques are purely syntax oriented, i.e., much time is spent on filtering, translating, interpreting, and modifying event logs given a particular question. This paper presents the core building blocks necessary to enable semantic process mining techniques/tools. Although the approach is highly generic, we focus on a particular process mining technique and show how this technique can be extended and implemented in the ProM framework tool

    The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    Get PDF
    Background. 
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community.

Description. 
SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers.

Conclusions.
SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behavior we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion
    • …
    corecore