28 research outputs found

    Run-time application migration using checkpoint/restore in userspace

    Full text link
    This paper presents an empirical study on the feasibility of using Checkpoint/Restore In Userspace (CRIU) for run-time application migration between hosts, with a particular focus on edge computing and cloud infrastructures. The paper provides experimental support for CRIU in Docker and offers insights into the impact of application memory usage on checkpoint size, time, and resources. Through a series of tests, we find that the time to checkpoint is linearly proportional to the size of the memory allocation of the container, while the restore is less so. Our findings contribute to the understanding of CRIU's performance and its potential use in edge computing scenarios. To obtain accurate and meaningful findings, we monitored system telemetry while using CRIU to observe its impact on the host machine's CPU and RAM. Although our results may not be groundbreaking, they offer a good overview and a technical report on the feasibility of using CRIU on edge devices. This study's findings and experimental support for CRIU in Docker could serve as a useful reference for future research on performance optimization and application migration using CRIU

    Enabling 5G Edge Native Applications

    Get PDF

    Elastic, Interoperable and Container-based Cloud Infrastructures for High Performance Computing

    Full text link
    Tesis por compendio[ES] Las aplicaciones científicas implican generalmente una carga computacional variable y no predecible a la que las instituciones deben hacer frente variando dinámicamente la asignación de recursos en función de las distintas necesidades computacionales. Las aplicaciones científicas pueden necesitar grandes requisitos. Por ejemplo, una gran cantidad de recursos computacionales para el procesado de numerosos trabajos independientes (High Throughput Computing o HTC) o recursos de alto rendimiento para la resolución de un problema individual (High Performance Computing o HPC). Los recursos computacionales necesarios en este tipo de aplicaciones suelen acarrear un coste muy alto que puede exceder la disponibilidad de los recursos de la institución o estos pueden no adaptarse correctamente a las necesidades de las aplicaciones científicas, especialmente en el caso de infraestructuras preparadas para la ejecución de aplicaciones de HPC. De hecho, es posible que las diferentes partes de una aplicación necesiten distintos tipos de recursos computacionales. Actualmente las plataformas de servicios en la nube se han convertido en una solución eficiente para satisfacer la demanda de las aplicaciones HTC, ya que proporcionan un abanico de recursos computacionales accesibles bajo demanda. Por esta razón, se ha producido un incremento en la cantidad de clouds híbridos, los cuales son una combinación de infraestructuras alojadas en servicios en la nube y en las propias instituciones (on-premise). Dado que las aplicaciones pueden ser procesadas en distintas infraestructuras, actualmente la portabilidad de las aplicaciones se ha convertido en un aspecto clave. Probablemente, las tecnologías de contenedores son la tecnología más popular para la entrega de aplicaciones gracias a que permiten reproducibilidad, trazabilidad, versionado, aislamiento y portabilidad. El objetivo de la tesis es proporcionar una arquitectura y una serie de servicios para proveer infraestructuras elásticas híbridas de procesamiento que puedan dar respuesta a las diferentes cargas de trabajo. Para ello, se ha considerado la utilización de elasticidad vertical y horizontal desarrollando una prueba de concepto para proporcionar elasticidad vertical y se ha diseñado una arquitectura cloud elástica de procesamiento de Análisis de Datos. Después, se ha trabajo en una arquitectura cloud de recursos heterogéneos de procesamiento de imágenes médicas que proporciona distintas colas de procesamiento para trabajos con diferentes requisitos. Esta arquitectura ha estado enmarcada en una colaboración con la empresa QUIBIM. En la última parte de la tesis, se ha evolucionado esta arquitectura para diseñar e implementar un cloud elástico, multi-site y multi-tenant para el procesamiento de imágenes médicas en el marco del proyecto europeo PRIMAGE. Esta arquitectura utiliza un almacenamiento distribuido integrando servicios externos para la autenticación y la autorización basados en OpenID Connect (OIDC). Para ello, se ha desarrollado la herramienta kube-authorizer que, de manera automatizada y a partir de la información obtenida en el proceso de autenticación, proporciona el control de acceso a los recursos de la infraestructura de procesamiento mediante la creación de las políticas y roles. Finalmente, se ha desarrollado otra herramienta, hpc-connector, que permite la integración de infraestructuras de procesamiento HPC en infraestructuras cloud sin necesitar realizar cambios en la infraestructura HPC ni en la arquitectura cloud. Cabe destacar que, durante la realización de esta tesis, se han utilizado distintas tecnologías de gestión de trabajos y de contenedores de código abierto, se han desarrollado herramientas y componentes de código abierto y se han implementado recetas para la configuración automatizada de las distintas arquitecturas diseñadas desde la perspectiva DevOps.[CA] Les aplicacions científiques impliquen generalment una càrrega computacional variable i no predictible a què les institucions han de fer front variant dinàmicament l'assignació de recursos en funció de les diferents necessitats computacionals. Les aplicacions científiques poden necessitar grans requisits. Per exemple, una gran quantitat de recursos computacionals per al processament de nombrosos treballs independents (High Throughput Computing o HTC) o recursos d'alt rendiment per a la resolució d'un problema individual (High Performance Computing o HPC). Els recursos computacionals necessaris en aquest tipus d'aplicacions solen comportar un cost molt elevat que pot excedir la disponibilitat dels recursos de la institució o aquests poden no adaptar-se correctament a les necessitats de les aplicacions científiques, especialment en el cas d'infraestructures preparades per a l'avaluació d'aplicacions d'HPC. De fet, és possible que les diferents parts d'una aplicació necessiten diferents tipus de recursos computacionals. Actualment les plataformes de servicis al núvol han esdevingut una solució eficient per satisfer la demanda de les aplicacions HTC, ja que proporcionen un ventall de recursos computacionals accessibles a demanda. Per aquest motiu, s'ha produït un increment de la quantitat de clouds híbrids, els quals són una combinació d'infraestructures allotjades a servicis en el núvol i a les mateixes institucions (on-premise). Donat que les aplicacions poden ser processades en diferents infraestructures, actualment la portabilitat de les aplicacions s'ha convertit en un aspecte clau. Probablement, les tecnologies de contenidors són la tecnologia més popular per a l'entrega d'aplicacions gràcies al fet que permeten reproductibilitat, traçabilitat, versionat, aïllament i portabilitat. L'objectiu de la tesi és proporcionar una arquitectura i una sèrie de servicis per proveir infraestructures elàstiques híbrides de processament que puguen donar resposta a les diferents càrregues de treball. Per a això, s'ha considerat la utilització d'elasticitat vertical i horitzontal desenvolupant una prova de concepte per proporcionar elasticitat vertical i s'ha dissenyat una arquitectura cloud elàstica de processament d'Anàlisi de Dades. Després, s'ha treballat en una arquitectura cloud de recursos heterogenis de processament d'imatges mèdiques que proporciona distintes cues de processament per a treballs amb diferents requisits. Aquesta arquitectura ha estat emmarcada en una col·laboració amb l'empresa QUIBIM. En l'última part de la tesi, s'ha evolucionat aquesta arquitectura per dissenyar i implementar un cloud elàstic, multi-site i multi-tenant per al processament d'imatges mèdiques en el marc del projecte europeu PRIMAGE. Aquesta arquitectura utilitza un emmagatzemament integrant servicis externs per a l'autenticació i autorització basats en OpenID Connect (OIDC). Per a això, s'ha desenvolupat la ferramenta kube-authorizer que, de manera automatitzada i a partir de la informació obtinguda en el procés d'autenticació, proporciona el control d'accés als recursos de la infraestructura de processament mitjançant la creació de les polítiques i rols. Finalment, s'ha desenvolupat una altra ferramenta, hpc-connector, que permet la integració d'infraestructures de processament HPC en infraestructures cloud sense necessitat de realitzar canvis en la infraestructura HPC ni en l'arquitectura cloud. Es pot destacar que, durant la realització d'aquesta tesi, s'han utilitzat diferents tecnologies de gestió de treballs i de contenidors de codi obert, s'han desenvolupat ferramentes i components de codi obert, i s'han implementat receptes per a la configuració automatitzada de les distintes arquitectures dissenyades des de la perspectiva DevOps.[EN] Scientific applications generally imply a variable and an unpredictable computational workload that institutions must address by dynamically adjusting the allocation of resources to their different computational needs. Scientific applications could require a high capacity, e.g. the concurrent usage of computational resources for processing several independent jobs (High Throughput Computing or HTC) or a high capability by means of using high-performance resources for solving complex problems (High Performance Computing or HPC). The computational resources required in this type of applications usually have a very high cost that may exceed the availability of the institution's resources or they are may not be successfully adapted to the scientific applications, especially in the case of infrastructures prepared for the execution of HPC applications. Indeed, it is possible that the different parts that compose an application require different type of computational resources. Nowadays, cloud service platforms have become an efficient solution to meet the need of HTC applications as they provide a wide range of computing resources accessible on demand. For this reason, the number of hybrid computational infrastructures has increased during the last years. The hybrid computation infrastructures are the combination of infrastructures hosted in cloud platforms and the computation resources hosted in the institutions, which are named on-premise infrastructures. As scientific applications can be processed on different infrastructures, the application delivery has become a key issue. Nowadays, containers are probably the most popular technology for application delivery as they ease reproducibility, traceability, versioning, isolation, and portability. The main objective of this thesis is to provide an architecture and a set of services to build up hybrid processing infrastructures that fit the need of different workloads. Hence, the thesis considered aspects such as elasticity and federation. The use of vertical and horizontal elasticity by developing a proof of concept to provide vertical elasticity on top of an elastic cloud architecture for data analytics. Afterwards, an elastic cloud architecture comprising heterogeneous computational resources has been implemented for medical imaging processing using multiple processing queues for jobs with different requirements. The development of this architecture has been framed in a collaboration with a company called QUIBIM. In the last part of the thesis, the previous work has been evolved to design and implement an elastic, multi-site and multi-tenant cloud architecture for medical image processing has been designed in the framework of a European project PRIMAGE. This architecture uses a storage integrating external services for the authentication and authorization based on OpenID Connect (OIDC). The tool kube-authorizer has been developed to provide access control to the resources of the processing infrastructure in an automatic way from the information obtained in the authentication process, by creating policies and roles. Finally, another tool, hpc-connector, has been developed to enable the integration of HPC processing infrastructures into cloud infrastructures without requiring modifications in both infrastructures, cloud and HPC. It should be noted that, during the realization of this thesis, different contributions to open source container and job management technologies have been performed by developing open source tools and components and configuration recipes for the automated configuration of the different architectures designed from the DevOps perspective. The results obtained support the feasibility of the vertical elasticity combined with the horizontal elasticity to implement QoS policies based on a deadline, as well as the feasibility of the federated authentication model to combine public and on-premise clouds.López Huguet, S. (2021). Elastic, Interoperable and Container-based Cloud Infrastructures for High Performance Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172327TESISCompendi

    Implementasi Penyimpanan Data Persisten pada Docker Swarm menggunakan Network File System(NFS)

    Get PDF
    Docker Swarm merupakan teknologi pengembangan sistem terdistribusi untuk melakukan manajemen pada kelompok mesin Docker. Dengan Docker Swarm dapat menjalankan banyak kontainer sekaligus pada kelompok mesin Docker. Pada penerapan sistem terdistribusi menggunakan Docker Swarm diperlukan sebuah penyimpanan data yang persisten. Namun masalahnya Docker Swarm menyimpan data pada kontainer, jika kontainer terhapus maka data akan ikut terhapus. Maka dari itu diperlukan sebuah alternatif penyimpanan data yang persisten. Penelitian sebelumnya menggunakan Storage Class Memory (SCM). SCM adalah teknologi perangkat keras baru yang menawarkan penyimpanan persisten, dan cepat untuk kontainer. Namun SCM merupakan teknologi perangkat keras yang khusus dan memerlukan biaya yang mahal. Alternatif lain dapat menggunakan Network File System (NFS). NFS merupakan open protokol yang dapat digunakan untuk berbagi file pada banyak jaringan komputer dan sistem operasi. Perancangan arsitektur NFS pada Docker Swarm menggunakan arsitektur client-server. Docker Swarm berperan sebagai client dan NFS berperan sebagai server. NFS mampu menyediakan penyimpanan data persisten pada Docker Swarm dengan melakukan sinkronisasi data sekalipun kontainer dihapus dan mesin di-restart. NFS dapat melakukan sinkronisasi data pada Docker Swarm untuk mengambil data yang telah tersimpan pada NFS sehingga data tetap persisten. Kinerja kecepatan write rata-rata pada NFS adalah 30.168 KB sedangkan kinerja kecepatan read rata-rata pada NFS adalah 63.939 KB

    Laadunvarmistustyökalujen varmistusvedostus järjestelmätasolla

    Get PDF
    In modern software development many kinds of verification is performed to prevent regressions and to ensure robustness of the software. Execution of verification tasks is usually automated with continuous delivery (CD) systems built on CD-platforms. Currently available CD-platforms (Jenkins, Concourse, GoCD) are essentially job schedulers based on traditional job scheduling model. They execute tasks to completion in order of arrival. This model is known to cause user dissatisfaction due to long wait-times when the variation in task execution times is high. It's also known to exhibit low resource utilization. This prevents integration of new kinds of verification, reduces cost-effectiveness and decreases developer productivity. Preemption, that is task-switching, enables much more flexibility to scheduling. It greatly improves the system's responsiveness by reducing wait-times. It solves the problem of short tasks having to wait extendedly for long tasks to complete. By enabling time-slicing of resources it increases their utilization. The result is interactive service for developers, supporting more kinds of verification in CD and enabling more value to be extracted of available compute resources. Implementation of preemption requires ability to suspend and resume the execution of verification tools. We evaluate system-level checkpointing, a technique used for preemption in high performance computing, that does not require modification of the verification tools. We selected Checkpoint and Restore in Userspace (CRIU) as the checkpointing utility to be evaluated. We evaluated CRIU's capability to checkpoint verification tools and measured checkpoint creation time and checkpoint image size. We selected AFL, AddressSanitizer, Valgrind and Android Emulator as the tools to be tested. Our results show CRIU is not yet capable of preempting arbitrary verification tools as only AFL and Valgrind were checkpointable. Checkpoint creation was fast making it feasible for interactive use in a CD-system. Checkpoint image's size was found to depend on the verification tool's memory size, as expected, meaning most tools would be feasible for preemption to network storage in a cluster.Nykypäivän ohjelmistokehityksessä käytetään monenlaisia laadunvarmistusmenetelmiä regressioiden estämiseen ja ohjelmistojen vikasietoisuuden takaamiseksi. Tällaisten tehtävien suoritus yleensä automatisoidaan jatkuvan toimituksen (CD) järjestelmillä, jotka on rakennettu jollekin CD-alustalle. Saatavilla olevat CD-alustat (Jenkins, Concourse, GoCD) ovat pääpiirteissään perinteiseen ryväslaskennan vuoronnusmalliin pohjautuvia tehtävävuorontajia. Ne suorittavat tehtäviä saapumisjärjestyksessä alusta loppuun. Tehtävien keston vaihdellessa odotusajat kasvavat pitkiksi, joten mallin käyttökokemus on huono. Resursseja ei myöskään hyödynnetä tehokkaasti. Nämä estävät uusien varmistusmenetelmien käytön sekä heikentävät kustannustehokkuutta ja ohjelmistokehittäjien tuottavuutta. Tehtävien vuorottelu tekee vuoronnuksesta joustavaa. Se lyhentää odotusaikoja huomattavasti. Lyhyet tehtävät eivät enää joudu odottamaan pitkäkestoisten tehtävien päättymistä ja resursseja hyödynnetään tehokkaammin. Näillä saavutetaan ohjelmistokehittäjille vuorovaikutteinen käyttökokemus, uudenlaisia varmistusmenetelmiä voidaan ottaa käyttöön ja laskentaresursseista saadaan parempi hyöty. Vuorottelun toteuttamiseksi laadunvarmistustyökaluiden suoritus täytyy olla keskeytettävissä. Työssä arvioimme järjestelmätason varmistusvedostusta, joka on suurteholaskennassa käytetty menetelmä tehtävien vuorotteluun. Menetelmä ei vaadi muutoksia työkaluihin. Tarkastelemme Checkpoint and Restore in Userspace (CRIU)-varmistusvedostustyökalua, sen kykyä laadunvarmistustyökalujen vuorotteluun sekä vedoksen luontiin kuluvaa aikaa ja vedoksen kokoa. Kokeiltuja laadunvarmistustyökaluja olivat AFL, AddressSanitizer, Valgrind sekä Android Emulator. Ilmeni, että CRIU ei vielä kykene kaikkien laadunvarmistustyökalujen vuorotteluun sillä kokeilluista työkaluista vain AFL ja Valgrind voitiin vedostaa. Vedoksen luonti oli nopeaa, mikä tekee varmistusvedostuksesta käyttökelpoisen vuorovaikutteisissa CD-järjestelmissä. Kuten oletettiin, vedoksen koko riippui laadunvarmistustyökalun muistin koosta, joten yleisimpien työkalujen vuorottelu verkkotallennusta käyttävissä laskentaryppäissä olisi mahdollista

    Containerization in Cloud Computing: performance analysis of virtualization architectures

    Get PDF
    La crescente adozione del cloud è fortemente influenzata dall’emergere di tecnologie che mirano a migliorare i processi di sviluppo e deployment di applicazioni di livello enterprise. L’obiettivo di questa tesi è analizzare una di queste soluzioni, chiamata “containerization” e di valutare nel dettaglio come questa tecnologia possa essere adottata in infrastrutture cloud in alternativa a soluzioni complementari come le macchine virtuali. Fino ad oggi, il modello tradizionale “virtual machine” è stata la soluzione predominante nel mercato. L’importante differenza architetturale che i container offrono ha portato questa tecnologia ad una rapida adozione poichè migliora di molto la gestione delle risorse, la loro condivisione e garantisce significativi miglioramenti in termini di provisioning delle singole istanze. Nella tesi, verrà esaminata la “containerization” sia dal punto di vista infrastrutturale che applicativo. Per quanto riguarda il primo aspetto, verranno analizzate le performances confrontando LXD, Docker e KVM, come hypervisor dell’infrastruttura cloud OpenStack, mentre il secondo punto concerne lo sviluppo di applicazioni di livello enterprise che devono essere installate su un insieme di server distribuiti. In tal caso, abbiamo bisogno di servizi di alto livello, come l’orchestrazione. Pertanto, verranno confrontate le performances delle seguenti soluzioni: Kubernetes, Docker Swarm, Apache Mesos e Cattle

    BUILDING TRUST IN CLOUD COMPUTING -ISOLATION IN CONTAINER BASED VIRTUALISATION

    Get PDF
    Container-based virtualisation has weak isolation compare with traditional VMs. Container-based virtualisation is based on kernel OS. Share kernel OS could increase the possibility of attacks. Therefore, the container-based virtualisation provides weak isolation. The lack of isolation from the host could be increase security threats on the container-based virtualisation. The attacker could gain access to all system in the container-based virtualisation because share the kernel OS. The container is a good idea to isolate the applications. However, container-based virtualisation does not provide isolation for users within containers. Therefore, each user can gain all container resources if the user gains access to the container. Cloud computing is revolutionizing many ecosystems through offering companies computing resources that are easy to use, connect, configure, and are automatic and chosen to a suitable scale. In this project, a prototype that could represent a real world data centre is implemented by using container-based virtualisation. TAIC allows each user in the system can perform particular actions within the container. Each user should have permission to do specific tasks within the containers. Only authorised users can access the resources within the containers that lead to making the user data availability. Set of rules using in this architecture that responsible for protecting user data and making it privacy. User data could not be changed by other users that make the user data integrity. Secure containers lead to build a secure environment that could be used in cloud computing and build trust relationships between cloud service provider and users. This architecture modification raises a wide range of security and privacy issues that need to be put into consideration. Isolation in container-based virtualisation is a critical issue. Therefore, the thesis will also present a novel Trust Architecture for Isolation in Containers (TAIC) system to protect the containers from malicious guests and isolate users within the containers to boost the security of data that is stored in them through provide policies that allow each user to perform a specific tasks within containers and provision of data protection and security to cloud computing. Further, due to the centralised nature of data stored in cloud infrastructures, my proposed design will minimise data leakage and improve monitoring

    Automatic Generation of Distributed Runtime Infrastructure for Internet of Things

    Get PDF
    Ph. D. ThesisThe Internet of Things (IoT) represents a network of connected devices that are able to cooperate and interact with each other in order to reach a particular goal. To attain this, the devices are equipped with identifying, sensing, networking and processing capabilities. Cloud computing, on the other hand, is the delivering of on-demand computing services – from applications, to storage, to processing power – typically over the internet. Clouds bring a number of advantages to distributed computing because of highly available pool of virtualized computing resource. Due to the large number of connected devices, real-world IoT use cases may generate overwhelmingly large amounts of data. This prompts the use of cloud resources for processing, storage and analysis of the data. Therefore, a typical IoT system comprises of a front-end (devices that collect and transmit data), and back-end – typically distributed Data Stream Management Systems (DSMSs) deployed on the cloud infrastructure, for data processing and analysis. Increasingly, new IoT devices are being manufactured to provide limited execution environment on top of their data sensing and transmitting capabilities. This consequently demands a change in the way data is being processed in a typical IoT-cloud setup. The traditional, centralised cloud-based data processing model – where IoT devices are used only for data collection – does not provide an efficient utilisation of all available resources. In addition, the fundamental requirements of real-time data processing such as short response time may not always be met. This prompts a new processing model which is based on decentralising the data processing tasks. The new decentralised architectural pattern allows some parts of data streaming computation to be executed directly on edge devices – closer to where the data is collected. Extending the processing capabilities to the IoT devices increases the robustness of applications as well as reduces the communication overhead between different components of an IoT system. However, this new pattern poses new challenges in the development, deployment and management of IoT applications. Firstly, there exists a large resource gap between the two parts of a typical IoT system (i.e. clouds and IoT devices); hence, prompting a new approach for IoT applications deployment and management. Secondly, the new decentralised approach necessitates the deployment of DSMS on distributed clusters of heterogeneous nodes resulting in unpredictable runtime performance and complex fault characteristics. Lastly, the environment where DSMSs are deployed is very dynamic due to user or device mobility, workload variation, and resource availability. In this thesis we present solutions to address the aforementioned challenges. We investigate how a high-level description of a data streaming computation can be used to automatically generate a distributed runtime infrastructure for Internet of Things. Subsequently, we develop a deployment and management system capable of distributing different operators of a data streaming computation onto different IoT gateway devices and cloud infrastructure. To address the other challenges, we propose a non-intrusive approach for performance evaluation of DSMSs and present a protocol and a set of algorithms for dynamic migration of stateful data stream operators. To improve our migration approach, we provide an optimisation technique which provides minimal application downtime and improves the accuracy of a data stream computation
    corecore