54,842 research outputs found

    Enhancing the Accuracy and Fairness of Human Decision Making

    Get PDF
    Societies often rely on human experts to take a wide variety of decisions affecting their members, from jail-or-release decisions taken by judges and stop-and-frisk decisions taken by police officers to accept-or-reject decisions taken by academics. In this context, each decision is taken by an expert who is typically chosen uniformly at random from a pool of experts. However, these decisions may be imperfect due to limited experience, implicit biases, or faulty probabilistic reasoning. Can we improve the accuracy and fairness of the overall decision making process by optimizing the assignment between experts and decisions? In this paper, we address the above problem from the perspective of sequential decision making and show that, for different fairness notions from the literature, it reduces to a sequence of (constrained) weighted bipartite matchings, which can be solved efficiently using algorithms with approximation guarantees. Moreover, these algorithms also benefit from posterior sampling to actively trade off exploitation---selecting expert assignments which lead to accurate and fair decisions---and exploration---selecting expert assignments to learn about the experts' preferences and biases. We demonstrate the effectiveness of our algorithms on both synthetic and real-world data and show that they can significantly improve both the accuracy and fairness of the decisions taken by pools of experts

    The invisible power of fairness. How machine learning shapes democracy

    Full text link
    Many machine learning systems make extensive use of large amounts of data regarding human behaviors. Several researchers have found various discriminatory practices related to the use of human-related machine learning systems, for example in the field of criminal justice, credit scoring and advertising. Fair machine learning is therefore emerging as a new field of study to mitigate biases that are inadvertently incorporated into algorithms. Data scientists and computer engineers are making various efforts to provide definitions of fairness. In this paper, we provide an overview of the most widespread definitions of fairness in the field of machine learning, arguing that the ideas highlighting each formalization are closely related to different ideas of justice and to different interpretations of democracy embedded in our culture. This work intends to analyze the definitions of fairness that have been proposed to date to interpret the underlying criteria and to relate them to different ideas of democracy.Comment: 12 pages, 1 figure, preprint version, submitted to The 32nd Canadian Conference on Artificial Intelligence that will take place in Kingston, Ontario, May 28 to May 31, 201

    Matching Code and Law: Achieving Algorithmic Fairness with Optimal Transport

    Full text link
    Increasingly, discrimination by algorithms is perceived as a societal and legal problem. As a response, a number of criteria for implementing algorithmic fairness in machine learning have been developed in the literature. This paper proposes the Continuous Fairness Algorithm (CFAθ\theta) which enables a continuous interpolation between different fairness definitions. More specifically, we make three main contributions to the existing literature. First, our approach allows the decision maker to continuously vary between specific concepts of individual and group fairness. As a consequence, the algorithm enables the decision maker to adopt intermediate ``worldviews'' on the degree of discrimination encoded in algorithmic processes, adding nuance to the extreme cases of ``we're all equal'' (WAE) and ``what you see is what you get'' (WYSIWYG) proposed so far in the literature. Second, we use optimal transport theory, and specifically the concept of the barycenter, to maximize decision maker utility under the chosen fairness constraints. Third, the algorithm is able to handle cases of intersectionality, i.e., of multi-dimensional discrimination of certain groups on grounds of several criteria. We discuss three main examples (credit applications; college admissions; insurance contracts) and map out the legal and policy implications of our approach. The explicit formalization of the trade-off between individual and group fairness allows this post-processing approach to be tailored to different situational contexts in which one or the other fairness criterion may take precedence. Finally, we evaluate our model experimentally.Comment: Vastly extended new version, now including computational experiment

    Fair Inputs and Fair Outputs: The Incompatibility of Fairness in Privacy and Accuracy

    Get PDF
    Fairness concerns about algorithmic decision-making systems have been mainly focused on the outputs (e.g., the accuracy of a classifier across individuals or groups). However, one may additionally be concerned with fairness in the inputs. In this paper, we propose and formulate two properties regarding the inputs of (features used by) a classifier. In particular, we claim that fair privacy (whether individuals are all asked to reveal the same information) and need-to-know (whether users are only asked for the minimal information required for the task at hand) are desirable properties of a decision system. We explore the interaction between these properties and fairness in the outputs (fair prediction accuracy). We show that for an optimal classifier these three properties are in general incompatible, and we explain what common properties of data make them incompatible. Finally we provide an algorithm to verify if the trade-off between the three properties exists in a given dataset, and use the algorithm to show that this trade-off is common in real data
    • …
    corecore