11 research outputs found

    Enhancing secrecy with sectorized transmission in decentralized wireless networks

    No full text
    In this paper, we combine sectorized transmission with artificial noise to establish secrecy in decentralized wireless networks. The locations of the legitimate nodes and the eavesdroppers are both modeled by homogeneous Poisson point processes. Using sectorized antennas, each legitimate transmitter sends an information signal in the sector which contains its intended receiver, while simultaneously emitting artificial noise in other sectors, in order to provide secrecy against the eavesdroppers. We first separately characterize the reliability performance of the legitimate link and the secrecy performance against malicious eavesdropping. Then, we derive the secrecy transmission capacity to measure the networkwide secrecy throughput. To facilitate the practical system design, we provide a sufficient condition, in terms of the system parameters and constraints, under which a positive secrecy transmission capacity is achievable. The optimal transmit power allocation between the information signal and the artificial noise for achieving the maximal secrecy transmission capacity is also investigated. Our analysis indicates that sectorized transmission provides significant secrecy enhancements in decentralized wireless networks.The work of X. Zhang and M. R. McKay was supported by the Hong Kong Research Grants Council (Grant No. 616312). The work of X. Zhou was supported by the Australian Research Council's Discovery Projects funding scheme (Project No. DP110102548)

    Enhancing Secrecy with Multi-Antenna Transmission in Wireless Ad Hoc Networks

    Full text link
    We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the networkwide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.Comment: to appear in IEEE Transactions on Information Forensics and Securit

    Enhancing secrecy with multi-antenna transmission in wireless ad hoc networks

    No full text
    We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the network-wide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.The work of X. Zhang andM. R.McKay was supported by the Hong Kong Research Grants Council under Grant 616312. The work of X. Zhou was supported by the Australian Research Council's Discovery Projects funding scheme under Project DP11010254

    Enhancing physical layer security in wireless networks with cooperative approaches

    Get PDF
    Motivated by recent developments in wireless communication, this thesis aims to characterize the secrecy performance in several types of typical wireless networks. Advanced techniques are designed and evaluated to enhance physical layer security in these networks with realistic assumptions, such as signal propagation loss, random node distribution and non-instantaneous channel state information (CSI). The first part of the thesis investigates secret communication through relay-assisted cognitive interference channel. The primary and secondary base stations (PBS and SBS) communicate with the primary and secondary receivers (PR and SR) respectively in the presence of multiple eavesdroppers. The SBS is allowed to transmit simultaneously with the PBS over the same spectrum instead of waiting for an idle channel. To improve security, cognitive relays transmit cooperative jamming (CJ) signals to create additional interferences in the direction of the eavesdroppers. Two CJ schemes are proposed to improve the secrecy rate of cognitive interference channels depending on the structure of cooperative relays. In the scheme where the multiple-antenna relay transmits weighted jamming signals, the combined approach of CJ and beamforming is investigated. In the scheme with multiple relays transmitting weighted jamming signals, the combined approach of CJ and relay selection is analyzed. Numerical results show that both these two schemes are effective in improving physical layer security of cognitive interference channel. In the second part, the focus is shifted to physical layer security in a random wireless network where both legitimate and eavesdropping nodes are randomly distributed. Three scenarios are analyzed to investigate the impact of various factors on security. In scenario one, the basic scheme is studied without a protected zone and interference. The probability distribution function (PDF) of channel gain with both fading and path loss has been derived and further applied to derive secrecy connectivity and ergodic secrecy capacity. In the second scenario, we studied using a protected zone surrounding the source node to enhance security where interference is absent. Both the cases that eavesdroppers are aware and unaware of the protected zone boundary are investigated. Based on the above scenarios, further deployment of the protected zones at legitimate receivers is designed to convert detrimental interference into a beneficial factor. Numerical results are investigated to check the reliability of the PDF for reciprocal of channel gain and to analyze the impact of protected zones on secrecy performance. In the third part, physical layer security in the downlink transmission of cellular network is studied. To model the repulsive property of the cellular network planning, we assume that the base stations (BSs) follow the Mat´ern hard-core point process (HCPP), while the eavesdroppers are deployed as an independent Poisson point process (PPP). The distribution function of the distances from a typical point to the nodes of the HCPP is derived. The noise-limited and interference-limited cellular networks are investigated by applying the fractional frequency reuse (FFR) in the system. For the noise-limited network, we derive the secrecy outage probability with two different strategies, i.e. the best BS serve and the nearest BS serve, by analyzing the statistics of channel gains. For the interference-limited network with the nearest BS serve, two transmission schemes are analyzed, i.e., transmission with and without the FFR. Numerical results reveal that both the schemes of transmitting with the best BS and the application of the FFR are beneficial for physical layer security in the downlink cellular networks, while the improvement du

    Intrinsically secure communication in large-scale wireless networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 169-181).The ability to exchange secret information is critical to many commercial, governmental, and military networks. Information-theoretic security - widely accepted as the strictest notion of security - relies on channel coding techniques that exploit the inherent randomness of the propagation channels to significantly strengthen the security of digital communications systems. Motivated by recent developments in the field, this thesis aims at a characterization of the fundamental secrecy limits of large-scale wireless networks. We start by introducing an information-theoretic definition of the intrinsically secure communications graph (iS-graph), based on the notion of strong secrecy. The iS-graph is a random geometric graph which captures the connections that can be securely established over a large-scale network, in the presence of spatially scattered eavesdroppers. Using fundamental tools from stochastic geometry, we analyze how the spatial densities of legitimate and eavesdropper nodes influence various properties of the Poisson iS-graph, such as the distribution of node degrees, the node isolation probabilities, and the achievable secrecy rates. We study how the wireless propagation effects (e.g., fading and shadowing) and eavesdropper collusion affect the secrecy properties of the network. We also explore the potential of sectorized transmission and eavesdropper neutralization as two techniques for enhancing the secrecy of communications. We then shift our focus to the global properties of the iS-graph, which concern secure connectivity over multiple hops. We first characterize percolation of the Poisson iS-graph on the infinite plane. We show that each of the four components of the iS-graph (in, out, weak, and strong component) experiences a phase transition at some nontrivial critical density of legitimate nodes. Operationally, this is important because it implies that long-range communication over multiple hops is still feasible when a security constraint is present. We then consider full-connectivity on a finite region of the Poisson iS-graph. Specifically, we derive simple, explicit expressions that closely approximate the probability of a node being securely connected to all other nodes inside the region. We also show that the iS-graph is asymptotically fully out-connected with probability one, but full in-connectivity remains bounded away from one, no matter how large the density of legitimate nodes is made. Our results clarify how the spatial density of eavesdroppers can compromise the intrinsic security of wireless networks. We are hopeful that further efforts in combining stochastic geometry with information-theoretic principles will lead to a more comprehensive treatment of wireless security.by Pedro C. Pinto.Ph.D

    Modeling and design for future wireless cellular networks: coverage, rate, and security

    No full text
    Accompanied by the wide penetration of smartphones and other personal mobile devices in recent years, the foremost demand for cellular communications has been transformed from offering subscribers a way to communicate through low data rate voice call connections initially, into providing connectivity with good coverage, high data rate, as well as strong security for sensitive data transmission. To satisfy the demands for improved coverage and data rate, the cellular network is undergoing a significant transition from conventional macrocell-only deployment to heterogeneous network (HetNet), in which a multitude of radio access technologies can be co-deployed intelligently and flexibly. However, the small cells newly introduced in HetNet, such as picocells and femtocells, have complicated the network topology and the interference environment, thus presenting new challenges in network modeling and design. In recent studies, performance analyses were carried out accurately and tractably with the help of Poisson point process (PPP)-based base station (BS) model. This PPP-based model is extended in this work with the impact of directional antennas taken into account. The significance of this extension is emphasized by the wide usage of directional antennas in sectorized macrocell cells. Moreover, studies showed that little coverage improvement can be achieved if small cells are randomly deployed in a uniform-distributed way. This fact inspires us to explore the effect of the non-uniform BS deployment. We propose a non-uniform femtocell deployment scheme, in which femtocell BSs are not utilized if they are located close to any macrocell BSs. Based upon our analytical framework, this scheme can provide remarkable improvements on both coverage and data rate, thus stressing the importance of selectively deploying femtocell BSs by considering their relative locations with macrocell BSs. To alleviate the severe interference problem, the uplink attenuation technique is frequently employed in femtocell receivers to reduce the impact of interference from unattached terminals such that femtocell communication can take place. In order to analyze and optimize the femtocell system performance with this technique, we propose an analytical framework and demonstrate the performance tradeoff resulted from higher and lower uplink attenuation levels. Furthermore, we provide two improved uplink attenuation algorithms, which adaptively adjust to the information of the scheduled traffic, data rate requirement, and interference condition. Apart from the cellular coverage and data rate, communication security has been an important issue to be addressed due to the increasing demand for transmitting private and sensitive information over wireless networks. In the last part of the thesis, physical layer security, as a new way to improve wireless secrecy, is studied for cellular networks. By highlighting the unique cellular features offered by the carrier-operated high-speed backhaul, we investigate the probabilistic characterization of the secrecy rate, and identify the performance impacts of cell association and location information exchange between BSs. These results provide necessary network design guidelines for selecting the appropriate cell association method and information exchange range

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore