440 research outputs found

    Zero-day Network Intrusion Detection using Machine Learning Approach

    Get PDF
    Zero-day network attacks are a growing global cybersecurity concern. Hackers exploit vulnerabilities in network systems, making network traffic analysis crucial in detecting and mitigating unauthorized attacks. However, inadequate and ineffective network traffic analysis can lead to prolonged network compromises. To address this, machine learning-based zero-day network intrusion detection systems (ZDNIDS) rely on monitoring and collecting relevant information from network traffic data. The selection of pertinent features is essential for optimal ZDNIDS performance given the voluminous nature of network traffic data, characterized by attributes. Unfortunately, current machine learning models utilized in this field exhibit inefficiency in detecting zero-day network attacks, resulting in a high false alarm rate and overall performance degradation. To overcome these limitations, this paper introduces a novel approach combining the anomaly-based extended isolation forest algorithm with the BAT algorithm and Nevergrad. Furthermore, the proposed model was evaluated using 5G network traffic, showcasing its effectiveness in efficiently detecting both known and unknown attacks, thereby reducing false alarms when compared to existing systems. This advancement contributes to improved internet security

    A Survey on Particle Swarm Optimization for Association Rule Mining

    Get PDF
    Association rule mining (ARM) is one of the core techniques of data mining to discover potentially valuable association relationships from mixed datasets. In the current research, various heuristic algorithms have been introduced into ARM to address the high computation time of traditional ARM. Although a more detailed review of the heuristic algorithms based on ARM is available, this paper differs from the existing reviews in that we expected it to provide a more comprehensive and multi-faceted survey of emerging research, which could provide a reference for researchers in the field to help them understand the state-of-the-art PSO-based ARM algorithms. In this paper, we review the existing research results. Heuristic algorithms for ARM were divided into three main groups, including biologically inspired, physically inspired, and other algorithms. Additionally, different types of ARM and their evaluation metrics are described in this paper, and the current status of the improvement in PSO algorithms is discussed in stages, including swarm initialization, algorithm parameter optimization, optimal particle update, and velocity and position updates. Furthermore, we discuss the applications of PSO-based ARM algorithms and propose further research directions by exploring the existing problems.publishedVersio

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Movie recommender systems: Concepts, methods, challenges, and future directions

    Get PDF
    Movie recommender systems are meant to give suggestions to the users based on the features they love the most. A highly performing movie recommendation will suggest movies that match the similarities with the highest degree of performance. This study conducts a systematic literature review on movie recommender systems. It highlights the filtering criteria in the recommender systems, algorithms implemented in movie recommender systems, the performance measurement criteria, the challenges in implementation, and recommendations for future research. Some of the most popular machine learning algorithms used in movie recommender systems such as K-means clustering, principal component analysis, and self-organizing maps with principal component analysis are discussed in detail. Special emphasis is given to research works performed using metaheuristic-based recommendation systems. The research aims to bring to light the advances made in developing the movie recommender systems, and what needs to be performed to reduce the current challenges in implementing the feasible solutions. The article will be helpful to researchers in the broad area of recommender systems as well as practicing data scientists involved in the implementation of such systems.Web of Science2213art. no. 490

    Improved collaborative filtering using clustering and association rule mining on implicit data

    Get PDF
    The recommender systems are recently becoming more significant due to their ability in making decisions on appropriate choices. Collaborative Filtering (CF) is the most successful and most applied technique in the design of a recommender system where items to an active user will be recommended based on the past rating records from like-minded users. Unfortunately, CF may lead to poor recommendation when user ratings on items are very sparse (insufficient number of ratings) in comparison with the huge number of users and items in user-item matrix. In the case of a lack of user rating on items, implicit feedback is used to profile a user’s item preferences. Implicit feedback can indicate users’ preferences by providing more evidences and information through observations made on users’ behaviors. Data mining technique, which is the focus of this research, can predict a user’s future behavior without item evaluation and can too, analyze his preferences. In order to investigate the states of research in CF and implicit feedback, a systematic literature review has been conducted on the published studies related to topic areas in CF and implicit feedback. To investigate users’ activities that influence the recommender system developed based on the CF technique, a critical observation on the public recommendation datasets has been carried out. To overcome data sparsity problem, this research applies users’ implicit interaction records with items to efficiently process massive data by employing association rules mining (Apriori algorithm). It uses item repetition within a transaction as an input for association rules mining, in which can achieve high recommendation accuracy. To do this, a modified preprocessing has been employed to discover similar interest patterns among users. In addition, the clustering technique (Hierarchical clustering) has been used to reduce the size of data and dimensionality of the item space as the performance of association rules mining. Then, similarities between items based on their features have been computed to make recommendations. Experiments have been conducted and the results have been compared with basic CF and other extended version of CF techniques including K-Means Clustering, Hybrid Representation, and Probabilistic Learning by using public dataset, namely, Million Song dataset. The experimental results demonstrate that the proposed technique exhibits improvements of an average of 20% in terms of Precision, Recall and Fmeasure metrics when compared to the basic CF technique. Our technique achieves even better performance (an average of 15% improvement in terms of Precision and Recall metrics) when compared to the other extended version of CF techniques, even when the data is very sparse

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF
    corecore