3,726 research outputs found

    Reimagining the Journal Editorial Process: An AI-Augmented Versus an AI-Driven Future

    Get PDF
    The editorial process at our leading information systems journals has been pivotal in shaping and growing our field. But this process has grown long in the tooth and is increasingly frustrating and challenging its various stakeholders: editors, reviewers, and authors. The sudden and explosive spread of AI tools, including advances in language models, make them a tempting fit in our efforts to ease and advance the editorial process. But we must carefully consider how the goals and methods of AI tools fit with the core purpose of the editorial process. We present a thought experiment exploring the implications of two distinct futures for the information systems powering today’s journal editorial process: an AI-augmented and an AI-driven one. The AI-augmented scenario envisions systems providing algorithmic predictions and recommendations to enhance human decision-making, offering enhanced efficiency while maintaining human judgment and accountability. However, it also requires debate over algorithm transparency, appropriate machine learning methods, and data privacy and security. The AI-driven scenario, meanwhile, imagines a fully autonomous and iterative AI. While potentially even more efficient, this future risks failing to align with academic values and norms, perpetuating data biases, and neglecting the important social bonds and community practices embedded in and strengthened by the human-led editorial process. We consider and contrast the two scenarios in terms of their usefulness and dangers to authors, reviewers, editors, and publishers. We conclude by cautioning against the lure of an AI-driven, metric-focused approach, advocating instead for a future where AI serves as a tool to augment human capacity and strengthen the quality of academic discourse. But more broadly, this thought experiment allows us to distill what the editorial process is about: the building of a premier research community instead of chasing metrics and efficiency. It is up to us to guard these values

    Applications of Deep Learning Models in Financial Forecasting

    Get PDF
    In financial markets, deep learning techniques sparked a revolution, reshaping conventional approaches and amplifying predictive capabilities. This thesis explored the applications of deep learning models to unravel insights and methodologies aimed at advancing financial forecasting. The crux of the research problem lies in the applications of predictive models within financial domains, characterised by high volatility and uncertainty. This thesis investigated the application of advanced deep-learning methodologies in the context of financial forecasting, addressing the challenges posed by the dynamic nature of financial markets. These challenges were tackled by exploring a range of techniques, including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with approaches such as encoding financial time series into images. Through analysis, methodologies such as transfer learning, convolutional neural networks, long short-term memory networks, generative modelling, and image encoding of time series data were examined. These methodologies collectively offered a comprehensive toolkit for extracting meaningful insights from financial data. The present work investigated the practicality of a deep learning CNN-LSTM model within the Directional Change framework to predict significant DC events—a task crucial for timely decisionmaking in financial markets. Furthermore, the potential of autoencoders and variational autoencoders to enhance financial forecasting accuracy and remove noise from financial time series data was explored. Leveraging their capacity within financial time series, these models offered promising avenues for improved data representation and subsequent forecasting. To further contribute to financial prediction capabilities, a deep multi-model was developed that harnessed the power of pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising the cross-disciplinary synergy between computer vision and financial forecasting. By integrating knowledge from these domains, novel insights into the prediction of market volatility were provided

    A survey on vulnerability of federated learning: A learning algorithm perspective

    Get PDF
    Federated Learning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly Deep Learning (DL) models on multiple devices or servers while maintaining data localized at owners’ sites. Without centralizing data, FL holds promise for scenarios where data integrity, privacy and security and are critical. However, this decentralized training process also opens up new avenues for opponents to launch unique attacks, where it has been becoming an urgent need to understand the vulnerabilities and corresponding defense mechanisms from a learning algorithm perspective. This review paper takes a comprehensive look at malicious attacks against FL, categorizing them from new perspectives on attack origins and targets, and providing insights into their methodology and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Based on the source and target of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D), Model to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highlighting their effectiveness, assumptions and potential areas for improvement. Defense strategies have evolved from using a singular metric to excluding malicious clients, to employing a multifaceted approach examining client models at various phases. In this survey paper, our research indicates that the to-learn data, the learning gradients, and the learned model at different stages all can be manipulated to initiate malicious attacks that range from undermining model performance, reconstructing private local data, and to inserting backdoors. We have also seen these threat are becoming more insidious. While earlier studies typically amplified malicious gradients, recent endeavors subtly alter the least significant weights in local models to bypass defense measures. This literature review provides a holistic understanding of the current FL threat landscape and highlights the importance of developing robust, efficient, and privacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications. The categorized bibliography can be found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning

    A survey on vulnerability of federated learning: A learning algorithm perspective

    Get PDF
    Federated Learning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly Deep Learning (DL) models on multiple devices or servers while maintaining data localized at owners’ sites. Without centralizing data, FL holds promise for scenarios where data integrity, privacy and security and are critical. However, this decentralized training process also opens up new avenues for opponents to launch unique attacks, where it has been becoming an urgent need to understand the vulnerabilities and corresponding defense mechanisms from a learning algorithm perspective. This review paper takes a comprehensive look at malicious attacks against FL, categorizing them from new perspectives on attack origins and targets, and providing insights into their methodology and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Based on the source and target of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D), Model to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highlighting their effectiveness, assumptions and potential areas for improvement. Defense strategies have evolved from using a singular metric to excluding malicious clients, to employing a multifaceted approach examining client models at various phases. In this survey paper, our research indicates that the to-learn data, the learning gradients, and the learned model at different stages all can be manipulated to initiate malicious attacks that range from undermining model performance, reconstructing private local data, and to inserting backdoors. We have also seen these threat are becoming more insidious. While earlier studies typically amplified malicious gradients, recent endeavors subtly alter the least significant weights in local models to bypass defense measures. This literature review provides a holistic understanding of the current FL threat landscape and highlights the importance of developing robust, efficient, and privacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications. The categorized bibliography can be found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning

    Unleashing the power of artificial intelligence for climate action in industrial markets

    Get PDF
    Artificial Intelligence (AI) is a game-changing capability in industrial markets that can accelerate humanity's race against climate change. Positioned in a resource-hungry and pollution-intensive industry, this study explores AI-powered climate service innovation capabilities and their overall effects. The study develops and validates an AI model, identifying three primary dimensions and nine subdimensions. Based on a dataset in the fast fashion industry, the findings show that the AI-powered climate service innovation capabilities significantly influence both environmental and market performance, in which environmental performance acts as a partial mediator. Specifically, the results identify the key elements of an AI-informed framework for climate action and show how this can be used to develop a range of mitigation, adaptation and resilience initiatives in response to climate change

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Learning analytics for enhanced professional capital development: a systematic review

    Get PDF
    Background/MotivationThis article presents a systematic review aimed at examining the utilization of learning analytics (LA) to enhance teachers’ professional capital.AimThe study focuses on three primary research questions: (1) exploring the characteristics and approaches of LA in professional capital, (2) investigating suggestions from LA for assessing and improving professional capital, and (3) examining variables studied in enhancing the most intricate dimension of professional capital using LA.MethodologyTo address the research objectives, a systematic review was conducted focusing on the key concepts “learning analytics” and “professional capital.” Following the procedures outlined encompassed in four stages: identification, screening, inclusion, and adequacy. The PRISMA 2009 protocol guided the systematic review process.Principal findingsThe findings of the study underscore the efficacy of LA as a catalyst for improving professional capital, particularly through collaborative learning and the utilization of tools like forums and online learning platforms. Social capital emerges as a pivotal component in integrating diverse types of professional capital, fostering opportunities for knowledge creation and social networking.Conclusion/SignificanceIn conclusion, the study highlights the paramount significance of addressing teachers’ professional capital development through collaborative approaches and leveraging technology, particularly in primary education. The article concludes by emphasizing the imperative for more research and knowledge dissemination in this field, aiming to ensure equity in learning and address the challenges posed by the COVID−19 pandemic

    Implementing precision methods in personalizing psychological therapies: barriers and possible ways forward

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: No data was used for the research described in the article.Highlights: • Personalizing psychological treatments means to customize treatment for individuals to enhance outcomes. • The application of precision methods to clinical psychology has led to data-driven psychological therapies. • Applying data-informed psychological therapies involves clinical, technical, statistical, and contextual aspects
    • …
    corecore