2,161 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A modified whale optimization algorithm-based adaptive fuzzy logic PID controller for load frequency control of autonomous power generation systems

    Get PDF
    An autonomous power generation system (APGS) contains units such as diesel energy generator, solar photovoltaic units, wind turbine generator and fuel cells along with energy-storing units such as the flywheel energy storage system and battery energy storage system. The components either run at lower/higher power output or may turn on/off at different instants of their operation. Due to this, the conventional controllers will not provide desired performance under varied load conditions. This paper proposes an adaptive fuzzy logic PID (AFPID) controller for load frequency control. In order to achieve an improved performance, a modified whale optimization algorithm (mWOA) was also proposed in this paper for tuning of the AFPID parameters. The proposed algorithm was first evaluated using standard test functions and compared with other recent algorithms to authenticate the competence of algorithm. The proposed mWOA algorithm outperforms PSO, GSA, DE and FEP algorithms in five out of seven unimodal test functions and four out of six multimodal test functions. The effectiveness of the AFPID compared with the conventional PID and the proposed AFPID provides better performance. Reduction of 39.13% in error criteria (objective function) compared with WOA-PID controller. The proposed approach was also compared with some recently proposed frequency control approaches in a widely used two-area test system

    Optimizing Three-Tank Liquid Level Control: Insights from Prairie Dog Optimization

    Get PDF
    The management of chemical process liquid levels poses a significant challenge in industrial process control, affecting the efficiency and stability of various sectors such as food processing, nuclear power generation, and pharmaceutical industries. While Proportional-Integral-Derivative (PID) control is a widely-used technique for maintaining liquid levels in tanks, its efficacy in optimizing complex and nonlinear systems has limitations. To overcome this, researchers are exploring the potential of metaheuristic algorithms, which offer robust optimization capabilities. This study introduces a novel approach to liquid level control using the Prairie Dog Optimization (PDO) algorithm, a metaheuristic algorithm inspired by prairie dog behavior. The primary objective is to design and implement a PID-controlled three-tank liquid level system that leverages PDO to regulate liquid levels effectively, ensuring enhanced stability and performance. The performance of the proposed system is evaluated using the ZLG criterion, a time domain metric-based objective function that quantifies the system's efficiency in maintaining desired liquid levels. Several analysis techniques are employed to understand the behavior of the system. Convergence curve analysis assesses the PDO-controlled system's convergence characteristics, providing insights into its efficiency and stability. Statistical analysis determines the algorithm's reliability and robustness across multiple runs. Stability analysis from both time and frequency response perspectives further validates the system's performance. A comprehensive comparison study with state-of-the-art metaheuristic algorithms, including AOA-HHO, CMA-ES, PSO, and ALC-PSODE, is conducted to benchmark the performance of PDO. The results highlight PDO's superior convergence, stability, and optimization capabilities, establishing its efficacy in real-world industrial applications. The research findings underscore the potential of PDO in PID control applications for three-tank liquid level systems. By outperforming benchmark algorithms, PDO demonstrates its value in industrial control scenarios, contributing to the advancement of metaheuristic-based control techniques and process optimization. This study opens avenues for engineers and practitioners to harness advanced control solutions, thereby enhancing industrial processes and automation

    Robust pole placement using firefly algorithm

    Get PDF
    In this paper, the new automatic tool that is based on the firefly algorithm whose purpose is optimization of pole location in the control of state feedback has been presented. The aim is satisfying specifications of performance like settling and rise time, steady state as well as overshoot error. Utilization of Firefly algorithm has demonstrated the benefits of controllers based on this kind of time domain over controllers based on the frequency domain like Proportional-Integral Derivative (PID). The presented method is more particular for the multi-input multi-output (MIMO) systems that have substantial state numbers. The simulation results indicated that the proposed method had superior performance in providing solution to the problems that involved stabilization of helicopter under the Rationalized Model of helicopter/ Moreover, it demonstrates the Firefly algorithm effectiveness with regards to, the state observer design and feedback controller and auto-tuning
    • …
    corecore