784 research outputs found

    From the Ground to the Cloud: Towards an Integrated Transportation Simulation Platform

    Get PDF
    Actualmente, as universidades e as empresas de todo o mundo têm uma enorme necessidade de metodologias que permitam simular e modelar. No que diz respeito ao tráfego e transportes, fazer mudanças físicas nas redes reais de trânsito poderia ser altamente dispendioso, estando dependente de decisões políticas e podendo ser altamente prejudicial ao meio ambiente. Por isso, a simulação é muito usada em tais cenários.No entanto, o uso de simulação para estudar ou analisar um domínio ou problema específico pode não ser trivial e podem ser necessárias diversas ferramentas, com diferentes resoluções e perspectivas de domínio, causando o aumento de problemas relacionados com interoperabilidade. Com as recentes evoluções no âmbito do cloud computing e do Software-as-a-Service (SaaS), existe um novo paradigma onde o software de simulação é usado sob a forma de serviços. Assim, o Simulation Software-as-a-Service (SimSaaS) é muito benéfico para melhor explorar o grande número de plataformas e armazenamento que a simulação precisa, e que o Cloud Computing pode fornecer.Para ultrapassar os problemas supra mencionados, o principal objetivo desta dissertação foi apresentar o atual estado da arte na área e propor uma plataforma de simulação de transporte direcionada a agentes, através da cloud, por meio de serviços. Utilizou-se o standard HLA (High Level Architecture) da IEEE para interoperabilidade de simuladores e agentes para controlo e coordenação.Para que tal seja possível, foi imperativo construir, através de uma revisão sistemática da literatura, o conhecimento necessário para desenvolver a plataforma. Os estudos revistos foram comparados e sumarisados na forma de uma taxonomia do trabalho de pesquisa que representa as oportunidades de pesquisa mais importantes para os próximos anos. A arquitectura e os principais cenários de utilização da plataforma foram detalhados. A partir daí, o subconjunto de características mais importantes foi seleccionado na forma de uma prova de conceito. A sua implementação foi explicada indicando o software utilizado (OpenStack, Pitch pRTI, SUMO e EBPS) e o cenário de simulação escolhido. Por fim, foram conduzidas algumas experiências para se perceber a melhor abordagem no controlo e lançamento de máquinas virtuais. Esta análise é importante para se obter uma melhor performance em simulações utilizando a infraestrutura desenvolvida.Nowadays, universities and companies all around the world have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications in the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. Therefore, simulation is broadly used in such scenarios.However, while studying a specific domain or problem, analysis through simulation may not be trivial and very often requires several simulation tools, with different resolutions and domain perspectives, hence raising interoperability issues. With the recent evolutions in cloud computing and Software-as-a-Service (SaaS), there is a new paradigm where simulation software is used in the form of services. So, Simulation Software-as-a-Service (SimSaaS) is very beneficial to better exploit the huge amount of platforms and storage that simulation needs per se - and Cloud Computing is able to provide such resources.To address issues arising in this novel perspective the main goal of this dissertation was to present the current state of the art in the field and to propose an agent-directed transportation simulation platform, through the cloud, by means of services. It was used the IEEE standard HLA (High Level Architecture) for simulator interoperability and agents for controlling and coordination.To do so, it was necessary to build, through a systematic literature review, the body of knowledge needed to develop such platform. The reviewed studies were compared and summarised leading to the creation of a taxonomy of the research work, which represent the front research opportunities for the next years. The main scenarios and architecture of the platform were detailed. The proof of concept's implementation was further explained including the used software (OpenStack, Pitch pRTI, SUMO and EBPS) and the chosen simulation scenario. Finally, some experiments were made about the best approach to manage and launch VMs (Virtual Machines). Such analysis is very important to have better performance in simulations under the developed infrastructure

    Life Cycle Analysis and Optimization of Wireless Charging Technology to Enhance Sustainability of Electric and Autonomous Vehicle Fleets

    Full text link
    The transportation sector is undergoing a major transformation. Emerging technologies play indispensable roles in driving this mobility shift, including vehicle electrification, connection, and automation. Among them, wireless power transfer (WPT) technology, or commonly known as wireless charging technology, is in the spotlight in recent years for its applicability in charging electric vehicles (EVs). On one hand, WPT for EVs can solve some of the key challenges in EV development, by: (1) reducing range anxiety of EV owners by allowing “charging while driving”; and (2) downsizing the EV battery while still fulfilling the same trip distance. More en-route wireless charging opportunities result in battery downsizing, which reduces the high EV price and vehicle weight and improves fuel economy. On the other hand, WPT infrastructure deployment is expensive and resource-intensive, and results in significant economic, environmental, and energy burdens, which can offset these benefits. This research aims to develop and apply a life cycle analysis and optimization framework to examine the role of wireless charging technology in driving sustainable mobility. This research highlights the technology trade-offs and bridges the gap between technology development and deployment by establishing an integrated life cycle assessment and life cycle cost (LCA-LCC) model framework to characterize and evaluate the economic, environmental, and energy performance of WPT EV systems vs. conventional plug-in charging EV systems. Life cycle optimization (LCO) techniques are used to improve the life cycle performance of WPT EV fleets. Based on case studies, this research draws observations and conditions under which wireless charging technology has potential to improve life cycle environmental, energy, and economic performance of electric vehicle fleets. This study begins with developing LCA-LCC and LCO models to evaluate stationary wireless power transfer (SWPT) for transit bus systems. Based on a case study of Ann Arbor bus systems, the wirelessly charged battery can be downsized to 27–44% of a plug-in charged battery, resulting in vehicle lightweighting and fuel economy improvement in the use phase that cancels out the burdens of large-scale infrastructure. Optimal siting strategies of WPT bus charging stations reduced life cycle costs, greenhouse gases (GHG), and energy by up to 13%, 8%, and 8%, respectively, compared to extreme cases of “no charger at any bus stop” and “chargers at every stop”. Next, the LCA-LCC and LCO model framework is applied to evaluate the economic, energy, and environmental feasibility of dynamic wireless power transfer (DWPT) for charging passenger cars on highways and urban roadways. A case study of Washtenaw County indicates that optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces life cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables downsizing of the EV battery capacity by up to 48% compared to the non-DWPT scenarios and boosts EV market penetration to around 50% of all vehicles in 20 years. Finally, synergies of WPT and autonomous driving technologies in enhancing sustainable mobility are demonstrated using the LCA framework. Compared to a plug-in charging battery electric vehicle system, a wireless charging and shared automated battery electric vehicle (W+SABEV) system will pay back GHG emission burdens of additional infrastructure deployment within 5 years if the wireless charging utility factor is above 19%.PHDNatural Resources & EnvironmentUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147602/1/bizc_1.pd

    German and Israeli Innovation: The Best of Two Worlds

    Get PDF
    This study reviews – through desk research and expert interviews with Mittelstand companies, startups and ecosystem experts – the current status of the Israeli startup ecosystem and the Mittelstand region of North Rhine- Westphalia (NRW), Germany. As a case study, it highlights potential opportunities for collaboration and analyzes different engagement modes that might serve to connect the two regions. The potential synergies between the two economies are based on a high degree of complementarity. A comparison of NRW’s key verticals and Israel’s primary areas of innovation indicates that there is significant overlap in verticals, such as artificial intelligence (AI), the internet of things (IoT), sensors and cybersecurity. Israeli startups can offer speed, agility and new ideas, while German Mittelstand companies can contribute expertise in production and scaling, access to markets, capital and support. The differences between Mittelstand companies and startups are less pronounced than those between startups and big corporations. However, three current barriers to fruitful collaboration have been identified: 1) a lack of access, 2) a lack of transparency regarding relevant players in the market, and 3) a lack of the internal resources needed to select the right partners, often due to time constraints or a lack of internal expertise on this issue. To ensure that positive business opportunities ensue, Mittelstand companies and startups alike have to be proactive in their search for cooperation partners and draw on a range of existing engagement modes (e.g., events, communities, accelerators). The interviews and the research conducted for this study made clear that no single mode of engagement can address all the needs and challenges associated with German-Israeli collaboration

    Technology Assessment of eVTOL Personal Air Transportation System

    Get PDF
    This thesis intended to provide a holistic vision on the potential consequences of the introduction of emerging electrical Vertical Takeoff and Landing (e VTOL) Personal Air Transportation System (PATS) to contribute to the forming of public and policy opinion, and to assess the impacts and the feasibility of that. Instead of looking from a detailed vehicle design viewpoint, we tried to understand the need, the impacts, and the perceptions and the concerns of stakeholders. Thus, it was set a framework and methodology starting with a technology assessment point of view in the light of transportation system analysis. Limitations of the current ground and airline transportation systems, increasing congestion, poor block speed, combined with expanding population and demand for affordable on- demand mobility are driving the development of future transportation technology and policy. The third wave of aeronautics might be the answer and could bring about great new capabilities for society that would bring aviation into a new age of being relevant in daily lives since eVTOL PATS is envisioned as the next logical step in the natural progression in the history of disruptive transportation system innovations. However, there are a lot of questions. Although there was difficulty since the system was an emerging air transportation mode, an interdisciplinary study has been conducted to assess the impacts of developing such a capability. The research questions were determined to address the research objectives. What is the current state of mobility and eVTOL air transportation mode? What are the potential benefits of eVTOL air transportation mode for user and society? What are the perceptions of service providers, regulator, and user? What are the main challenges including technology, regulation, operation, social and environment aspects to enable the system? What are the enabling technologies? Nevertheless, with the results obtained lately from the research activities, revolutionary technologies and regulations are bringing us closer to eVTOL PATS reality every day. It can be argued that a new socio-technical transition will come about like the transition from horse drawn carriers to cars. Even if it is still a long way to go, it seems rather likely that the time has been arriving in the next decade. Their existence and operation would therefore need to be taken into consideration for today’s planning considerations and construction projects to be able to have this emerging air transportation mode available in the future. As the technology underlying eVTOL PATS evolves, wider eVTOL adoption across various markets is likely to be supported further if a set of key challenges such as safety and security, ease of use and autonomy, noise, infrastructure, and air traffic management are overcome. Achieving drastic improvements in ease of use, safety and community acceptable noise are the most critical steps towards the future feasibility of this market. Multi-use demos and demonstrating successful operation with early vehicles, namely eVTOL PATS prototype field operations, will create public acceptance and understanding of potentials in emerging air transportation mode for public good, use and learn in multiple applications. The overall perception of the user, service provider and regulator are positive, and the support is high. Shortly, a successful implementation and sustainable transition will depend on overcoming technological hurdles, regulatory frameworks, operational safety, cost competitiveness, and sensibilities of the affected communities. There is a need to enable people and goods to have the convenience of on-demand, point-to-point safe travel, further, anywhere in less travel time, through a network of pocket airports/vertiports, and there is a significant potential benefit so that policy makers, regulators and metropoles’ transportation planning departments should consider an inclusion of eVTOL air transportation mode into the scenarios and policies of the future.Esta tese pretende fornecer uma visão holística sobre as potenciais consequências da introdução do Sistema de Transporte Aéreo Pessoal (PATS) de Decolagem e Pouso Vertical elétrico emergente (e VTOL) para contribuir para a formação de opinião pública e política, e para avaliar os impactos e a viabilidade disso. Em vez de olhar de um ponto de vista detalhado o projeto do veículo, tentamos entender a necessidade, os impactos, as percepções e as preocupações das partes interessadas. Assim, foi definido um quadro e uma metodologia partindo de um ponto de vista de avaliação de tecnologia à luz da análise do sistema de transporte. As limitações dos atuais sistemas de transporte terrestre e aéreo, o aumento do congestionamento, a baixa velocidade do tráfego, combinados com a expansão da população e a mobilidade com procura acessível estão impulsionando o desenvolvimento de futuras tecnologias e políticas de transporte. A terceira onda da aeronáutica pode ser a resposta e pode trazer grandes novas capacidades para a sociedade que trariam a aviação para uma nova era de ser relevante na vida cotidiana, uma vez que o VTOL PATS é visto como o próximo passo lógico na progressão natural na história das inovações disruptivas do sistema de transporte. No entanto, há muitas perguntas. Embora tenha havido dificuldade por se tratar de um modo de transporte aéreo emergente, um estudo interdisciplinar foi realizado para avaliar os impactos do desenvolvimento de tal capacidade. As questões de investigação foram determinadas para atender aos objetivos do projeto. Qual é o estado atual da mobilidade e do modo de transporte aéreo eVTOL? Quais são os benefícios potenciais do modo de transporte aéreo eVTOL para o utilizador e a sociedade? Quais são as percepções dos provedores de serviços, regulador e utilizador? Quais são os principais desafios, incluindo tecnologia, regulamentação, operação, aspectos sociais e ambientais para habilitar o sistema? Quais são as tecnologias facilitadoras? No entanto, com os resultados obtidos ultimamente nas atividades de pesquisa, tecnologias e regulamentações revolucionárias estão nos aproximando cada dia mais da realidade do VTOL PATS. Pode-se argumentar que uma nova transição sócio-técnica ocorrerá como a transição de carruagens puxadas por cavalos para automóveis. Mesmo que ainda seja um longo caminho a percorrer, parece bastante provável que a hora esteja chegando na próxima década. A sua existência e operação, portanto, precisam ser levadas em consideração para as questões de planeamento e projetos de construção de hoje para poder ter esse modo de transporte aéreo emergente disponível no futuro. À medida que a tecnologia subjacente ao eVTOL PATS evolui, é provável que a adoção mais ampla do eVTOL em vários mercados seja ainda mais apoiada se um conjunto de desafios importantes, como segurança e proteção, facilidade de uso e autonomia, ruído, infraestrutura e gestão de tráfego aéreo forem superados. Alcançar melhorias drásticas na facilidade de uso, segurança e ruído aceitável pela comunidade são os passos mais críticos para a viabilidade futura deste mercado. Demonstrações multi-uso e demonstração de operação bem- sucedida com veículos iniciais, ou seja, operações de campo do protótipo eVTOL PATS, criarão aceitação pública e compreensão dos potenciais no modo de transporte aéreo emergente para o bem público, uso e aprendizado em várias aplicações. A percepção geral do utilizador, prestador de serviço e regulador é positiva, e o suporte é alto. Uma implementação bem-sucedida e uma transição sustentável dependerá da superação de obstáculos tecnológicos, estruturas regulatórias, segurança operacional, competitividade de custos e sensibilidade das comunidades afetadas. Há uma necessidade de permitir que pessoas e mercadorias tenham a conveniência de viagens seguras de que necessitam, ponto a ponto, e além disso, em qualquer lugar em menos tempo de viagem. Isso pode ser feito por meio de uma rede de aeroportos/vertiports, e há um benefício potencial significativo para que os formuladores de políticas, reguladores e departamentos de planeamento de transporte das grandes metrópoles considerem a inclusão do modo de transporte aéreo eVTOL nos cenários e políticas do futuro

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Second Annual Transformative Vertical Flight Concepts Workshop: Enabling New Flight Concepts Through Novel Propulsion and Energy Architectures

    Get PDF
    On August 3rd and 4th, 2015, a workshop was held at the NASA Ames Research Center, located at the Moffett Federal Airfield in California to explore the aviation communities interest in Transformative Vertical Flight (TVF) Concepts. The Workshop was sponsored by the AHS International (AHS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), and hosted by the NASA Aeronautics Research Institute (NARI). This second annual workshop built on the success and enthusiasm generated by the first TVF Workshop held in Washington, DC in August of 2014. The previous Workshop identified the existence of a multi-disciplinary community interested in this topic and established a consensus among the participants that opportunities to establish further collaborations in this area are warranted. The desire to conduct a series of annual workshops augmented by online virtual technical seminars to strengthen the TVF community and continue planning for advocacy and collaboration was a direct outcome of the first Workshop. The second Workshop organizers focused on four desired action-oriented outcomes. The first was to establish and document common stakeholder needs and areas of potential collaborations. This includes advocacy strategies to encourage the future success of unconventional vertiport capable flight concept solutions that are enabled by emerging technologies. The second was to assemble a community that can collaborate on new conceptual design and analysis tools to permit novel configuration paths with far greater multi-disciplinary coupling (i.e., aero-propulsive-control) to be investigated. The third was to establish a community to develop and deploy regulatory guidelines. This community would have the potential to initiate formation of an American Society for Testing and Materials (ASTM) F44 Committee Subgroup for the development of consensus-based certification standards for General Aviation scale vertiport capable flight systems. These standards need to accommodate novel fixed wing concepts that do not fit within the existing Federal Aviation Administration (FAA) rotorcraft certification framework (Code of Federal Regulations, Title 14, Chapter I, Subchapter C, Part 27). The fourth desired outcome was to launch an information campaign to ensure key U.S. Government agencies understand the potential benefits and industry interest in establishing new vertiport capable flight markets. This record of the Workshop proceedings documents Workshop activities and products including summaries of the video recorded technical presentations, overviews of three breakout sessions (Missions Operational Concepts, Prioritized Technical Challenges, Regulatory Roadmap), and a preliminary draft roadmap framework for TVF

    Emerging technologies for learning (volume 1)

    Get PDF
    Collection of 5 articles on emerging technologies and trend
    corecore