68 research outputs found

    Ibeacon based proximity and indoor localization system

    Get PDF
    User location can be leveraged to provide a wide range of services in a variety of indoor locations including retails stores, hospitals, airports, museums and libraries etc. The widescale proliferation of user devices such as smart phones and the interconnectivity among different entities, powered by Internet of Things (IoT), makes user device-based localization a viable approach to provide Location Based Services (LBS). Location based services can be broadly classified into 1) Proximity based services that provides services based on a rough estimate of users distance to any entity, and 2) Indoor localization that locates a user\u27s exact location in the indoor environment rather than a rough estimate of the distance. The primary requirements of these services are higher energy efficiency, localization accuracy, wide reception range, low cost and availability. Technologies such as WiFi, Radio Frequency Identification (RFID) and Ultra Wideband (UWB) have been used to provide both indoor localization and proximity based services. Since these technologies are not primarily intended for LBS, they do not fulfill the aforementioned requirements. Bluetooth Low Energy (BLE) enabled beacons that use Apple\u27s proprietary iBeacon protocol are mainly intended to provide proximity based services. iBeacons satisfy the energy efficiency, wide reception range and availability requirements of LBS. However, iBeacons are prone to noise due to their reliance on Received Signal Strength Indicator (RSSI), which drastically fluctuates in indoor environments due to interference from different obstructions. This limits its proximity detection accuracy. In this thesis, we present an iBeacon based proximity and indoor localization system. We present our two server-based algorithms to improve the proximity detection accuracy by reducing the variation in the RSSI and using the RSSI-estimated distance, rather than the RSSI itself, for proximity classification. Our algorithms Server-side Running Average and Server-side Kalman Filter improves the proximity detection accuracy by 29% and 32% respectively in contrast to Apple\u27s current approach of using moving average of RSSI values for proximity classification. We utilize a server-based approach because of the greater computing power of servers. Furthermore, server-based approach helps reduce the energy consumption of user device. We describe our cloud based architecture for iBeacon based proximity detection. We also use iBeacons for indoor localization. iBeacons are not primarily intended for indoor localization as their reliance on RSSI makes them unsuitable for accurate indoor localization. To improve the localization accuracy, we use Bayesian filtering algorithms such as Particle Filter (PF), Kalman Filter (KF), and Extended Kalman Filter (EKF). We show that by cascading Kalman Filter and Extended Kalman Filter with Particle Filter, the indoor localization accuracy can be improved by 28% and 33.94% respectively when compared with only using PF. The PF, KFPF and PFEKF algorithm on the server side have average localization error of 1.441 meters, 1.0351 meters and 0.9519 meters respectively

    Novel iBeacon Placement for Indoor Positioning in IoT

    Full text link
    © 2018 IEEE. Indoor positioning and location estimation inside the buildings is still challenging in the Internet of Things platform. However, the GPS signals could successfully solve the outdoor localization problem. A recently introduced RSS-based device, named iBeacon, paves the way to estimate the users location inside the buildings. Due to the complexity of indoor RF environments, the positioning accuracy is affected by the placement of the iBeacons. Inadvertently, the concept of iBeacon placement for improving the accuracy remains unattended by the current research. This paper provides a comprehensive analysis and experiments on the importance of iBeacon placement, and factors impacting the beacon signal quality. Moreover, we propose a novel beacon placement strategy, Crystal-shape iBeacon Placement. As another contribution, a customized application for android is developed which is used for recording and analyzing the iBeacon signals. Our proposed placement strategy could achieve 21.7% higher precision than the existing normal iBeacon placement

    iBeacon-based indoor positioning system: from theory to practical deployment

    Get PDF
    Developing an indoor positioning system became essential when global positioning system signals could not work well in indoor environments. Mobile positioning can be accomplished via many radio frequency technology such as Bluetooth low energy (BLE), wireless fidelity (Wi-Fi), ultra-wideband (UWB), and so on. With the pressing need for indoor positioning systems, we, in this work, present a deployment scheme for smartphone using Bluetooth iBeacons. Three main parts, hardware deployment, software deployment, and positioning accuracy assessment, are discussed carefully to find the optimal solution for a complete indoor positioning system. Our application and experimental results show that proposed solution is feasible and indoor positioning system is completely attainable

    Indoor positioning of shoppers using a network of bluetooth low energy beacons

    Get PDF
    In this paper we present our work on the indoor positioning of users (shoppers), using a network of Bluetooth Low Energy (BLE) beacons deployed in a large wholesale shopping store. Our objective is to accurately determine which product sections a user is adjacent to while traversing the store, using RSSI readings from multiple beacons, measured asynchronously on a standard commercial mobile device. We further wish to leverage the store layout (which imposes natural constraints on the movement of users) and the physical configuration of the beacon network, to produce a robust and efficient solution. We start by describing our application context and hardware configuration, and proceed to introduce our node-graph model of user location. We then describe our experimental work which begins with an investigation of signal characteristics along and across aisles. We propose three methods of localization, using a “nearest-beacon” approach as a base-line; exponentially averaged weighted range estimates; and a particle-filter method based on the RSSI attenuation model and Gaussian-noise. Our results demonstrate that the particle filter method significantly out-performs the others. Scalability also makes this method ideal for applications run on mobile devices with more limited computational capabilitie

    Smart Room Attendance Monitoring and Location Tracking with iBeacon Technology

    Get PDF
    The objective of this project was to develop a system and a phone application using iBeacon technology to track people’s attendance and location at different types of events. This includes tracking their location by using a location algorithm and receiving identifying information from each person through the use of a phone application. This information will then be sent to a server for record keeping

    Smart Parking System Based on Bluetooth Low Energy Beacons with Particle Filtering

    Full text link
    Urban centers and dense populations are expanding, hence, there is a growing demand for novel applications to aid in planning and optimization. In this work, a smart parking system that operates both indoor and outdoor is introduced. The system is based on Bluetooth Low Energy (BLE) beacons and uses particle filtering to improve its accuracy. Through simple BLE connectivity with smartphones, an intuitive parking system is designed and deployed. The proposed system pairs each spot with a unique BLE beacon, providing users with guidance to free parking spaces and a secure and automated payment scheme based on real-time usage of the parking space. Three sets of experiments were conducted to examine different aspects of the system. A particle filter is implemented in order to increase the system performance and improve the credence of the results. Through extensive experimentation in both indoor and outdoor parking spaces, the system was able to correctly predict which spot the user has parked in, as well as estimate the distance of the user from the beacon
    corecore