145 research outputs found

    Security and Privacy Dimensions in Next Generation DDDAS/Infosymbiotic Systems: A Position Paper

    Get PDF
    AbstractThe omnipresent pervasiveness of personal devices will expand the applicability of the Dynamic Data Driven Application Systems (DDDAS) paradigm in innumerable ways. While every single smartphone or wearable device is potentially a sensor with powerful computing and data capabilities, privacy and security in the context of human participants must be addressed to leverage the infinite possibilities of dynamic data driven application systems. We propose a security and privacy preserving framework for next generation systems that harness the full power of the DDDAS paradigm while (1) ensuring provable privacy guarantees for sensitive data; (2) enabling field-level, intermediate, and central hierarchical feedback-driven analysis for both data volume mitigation and security; and (3) intrinsically addressing uncertainty caused either by measurement error or security-driven data perturbation. These thrusts will form the foundation for secure and private deployments of large scale hybrid participant-sensor DDDAS systems of the future

    IDEAL-CITIES: A Trustworthy and Sustainable Framework for Circular Smart Cities

    Get PDF
    Reflecting upon the sustainability challenges cities will be facing in the near future and the recent technological developments allowing cities to become "smart", we introduce IDEAL-CITIES; a framework aiming to provide an architecture for cyber-physical systems to deliver a datadriven Circular Economy model in a city context. In the IDEALCITIES ecosystem, the city's finite resources as well as citizens will form the pool of intelligent assets in order to contribute to high utilization through crowdsourcing and real-time decision making and planning. We describe two use cases as a vehicle to demonstrate how a smart city can serve the Circular Economy paradig

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities

    Get PDF
    Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies, and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas

    Leveraging Resources on Anonymous Mobile Edge Nodes

    Get PDF
    Smart devices have become an essential component in the life of mankind. The quick rise of smartphones, IoTs, and wearable devices enabled applications that were not possible few years ago, e.g., health monitoring and online banking. Meanwhile, smart sensing laid the infrastructure for smart homes and smart cities. The intrusive nature of smart devices granted access to huge amounts of raw data. Researchers seized the moment with complex algorithms and data models to process the data over the cloud and extract as much information as possible. However, the pace and amount of data generation, in addition to, networking protocols transmitting data to cloud servers failed short in touching more than 20% of what was generated on the edge of the network. On the other hand, smart devices carry a large set of resources, e.g., CPU, memory, and camera, that sit idle most of the time. Studies showed that for plenty of the time resources are either idle, e.g., sleeping and eating, or underutilized, e.g. inertial sensors during phone calls. These findings articulate a problem in processing large data sets, while having idle resources in the close proximity. In this dissertation, we propose harvesting underutilized edge resources then use them in processing the huge data generated, and currently wasted, through applications running at the edge of the network. We propose flipping the concept of cloud computing, instead of sending massive amounts of data for processing over the cloud, we distribute lightweight applications to process data on users\u27 smart devices. We envision this approach to enhance the network\u27s bandwidth, grant access to larger datasets, provide low latency responses, and more importantly involve up-to-date user\u27s contextual information in processing. However, such benefits come with a set of challenges: How to locate suitable resources? How to match resources with data providers? How to inform resources what to do? and When? How to orchestrate applications\u27 execution on multiple devices? and How to communicate between devices on the edge? Communication between devices at the edge has different parameters in terms of device mobility, topology, and data rate. Standard protocols, e.g., Wi-Fi or Bluetooth, were not designed for edge computing, hence, does not offer a perfect match. Edge computing requires a lightweight protocol that provides quick device discovery, decent data rate, and multicasting to devices in the proximity. Bluetooth features wide acceptance within the IoT community, however, the low data rate and unicast communication limits its use on the edge. Despite being the most suitable communication protocol for edge computing and unlike other protocols, Bluetooth has a closed source code that blocks lower layer in front of all forms of research study, enhancement, and customization. Hence, we offer an open source version of Bluetooth and then customize it for edge computing applications. In this dissertation, we propose Leveraging Resources on Anonymous Mobile Edge Nodes (LAMEN), a three-tier framework where edge devices are clustered by proximities. On having an application to execute, LAMEN clusters discover and allocate resources, share application\u27s executable with resources, and estimate incentives for each participating resource. In a cluster, a single head node, i.e., mediator, is responsible for resource discovery and allocation. Mediators orchestrate cluster resources and present them as a virtually large homogeneous resource. For example, two devices each offering either a camera or a speaker are presented outside the cluster as a single device with both camera and speaker, this can be extended to any combination of resources. Then, mediator handles applications\u27 distribution within a cluster as needed. Also, we provide a communication protocol that is customizable to the edge environment and application\u27s need. Pushing lightweight applications that end devices can execute over their locally generated data have the following benefits: First, avoid sharing user data with cloud server, which is a privacy concern for many of them; Second, introduce mediators as a local cloud controller closer to the edge; Third, hide the user\u27s identity behind mediators; and Finally, enhance bandwidth utilization by keeping raw data at the edge and transmitting processed information. Our evaluation shows an optimized resource lookup and application assignment schemes. In addition to, scalability in handling networks with large number of devices. In order to overcome the communication challenges, we provide an open source communication protocol that we customize for edge computing applications, however, it can be used beyond the scope of LAMEN. Finally, we present three applications to show how LAMEN enables various application domains on the edge of the network. In summary, we propose a framework to orchestrate underutilized resources at the edge of the network towards processing data that are generated in their proximity. Using the approaches explained later in the dissertation, we show how LAMEN enhances the performance of applications and enables a new set of applications that were not feasible

    Crowd-sensing our Smart Cities: a Platform for Noise Monitoring and Acoustic Urban Planning

    Get PDF
    Environmental pollution and the corresponding control measurements put in place to tackle it play a significant role in determining the actual quality of life in modern cities. Amongst the several pollutant that have to be faced on a daily basis, urban noise represent one of the most widely known for its already ascertained health-related issues. However, no systematic noise management and control activities are performed in the majority of European cities due to a series of limiting factors (e.g., expensive monitoring equipment, few available technician, scarce awareness of the problem in city managers). The recent advances in the Smart City model, which is being progressively adopted in many cities, nowadays offer multiple possibilities to improve the effectiveness in this area. The Mobile Crowd Sensing paradigm allows collecting data streams from smartphone built-in sensors on large geographical scales at no cost and without involving expert data captors, provided that an adequate IT infrastructure has been implemented to manage properly the gathered measurements. In this paper, we present an improved version of a MCS-based platform, named City Soundscape, which allows exploiting any Android-based device as a portable acoustic monitoring station and that offers city managers an effective and straightforward tool for planning Noise Reduction Interventions (NRIs) within their cities. The platform also now offers a new logical microservices architecture

    Aiding first incident responders using a decision support system based on live drone feeds

    Get PDF
    In case of a dangerous incident, such as a fire, a collision or an earthquake, a lot of contextual data is available for the first incident responders when handling this incident. Based on this data, a commander on scene or dispatchers need to make split-second decisions to get a good overview on the situation and to avoid further injuries or risks. Therefore, we propose a decision support system that can aid incident responders on scene in prioritizing the rescue efforts that need to be addressed. The system collects relevant data from a custom designed drone by detecting objects such as firefighters, fires, victims, fuel tanks, etc. The drone autonomously observes the incident area, and based on the detected information it proposes a prioritized based action list on e.g. urgency or danger to incident responders
    corecore