54,307 research outputs found

    Mediating Cognitive Transformation with VR 3D Sketching during Conceptual Architectural Design Process

    Get PDF
    Communications for information synchronization during the conceptual design phase require designers to employ more intuitive digital design tools. This paper presents findings of a feasibility study for using VR 3D sketching interface in order to replace current non-intuitive CAD tools. We used a sequential mixed method research methodology including a qualitative case study and a cognitive-based quantitative protocol analysis experiment. Foremost, the case study research was conducted in order to understand how novice designers make intuitive decisions. The case study documented the failure of conventional sketching methods in articulating complicated design ideas and shortcomings of current CAD tools in intuitive ideation. The case study’s findings then became the theoretical foundations for testing the feasibility of using VR 3D sketching interface during design. The latter phase of study evaluated the designers’ spatial cognition and collaboration at six different levels: “physical-actions”, “perceptualac ons”, “functional-actions”, “conceptual-actions”, “cognitive synchronizations”, and “gestures”. The results and confirmed hypotheses showed that the utilized tangible 3D sketching interface improved novice designers’ cognitive and collaborative design activities. In summary this paper presents the influences of current external representation tools on designers’ cognition and collaboration as well as providing the necessary theoretical foundations for implementing VR 3D sketching interface. It contributes towards transforming conceptual architectural design phase from analogue to digital by proposing a new VR design interface. The paper proposes this transformation to fill in the existing gap between analogue conceptual architectural design process and remaining digital engineering parts of building design process hence expediting digital design process

    The impact of Group Intelligence software on enquiry-based learning

    Get PDF
    Despite the increasing use of groupware technologies in education, there is little evidence of their impact, especially within an enquiry-based learning (EBL) context. In this paper, we examine the use of a commercial standard Group Intelligence software called GroupSystemsÂźThinkTank. To date, ThinkTank has been adopted mainly in the USA and supports teams in generating ideas, categorising, prioritising, voting and multi-criteria decision-making and automatically generates a report at the end of each session. The software was used by students carrying out an EBL project, set by employers, for a full academic year. The criteria for assessing the impact of ThinkTank on student learning were those of creativity, participation, productivity, engagement and understanding. Data was collected throughout the year using a combination of interviews and questionnaires, and written feedback from employers. The overall findings show an increase in levels of productivity and creativity, evidence of a deeper understanding of their work but some variation in attitudes towards participation in the early stages of the project

    Enhancing Creativity in Interaction Design: Alternative Design Brief

    Get PDF
    This paper offers a critique of the design brief as it is currently used in teaching interaction design and proposes an alternative way of developing it. Such a design brief requires the exploration of alternative application domains for an already developed technology. The paper presents a case study where such a novel type of design brief has been offered to the students taking part in a collaborative design project and discusses how it supported divergent thinking and creativity as well as helped enhancing the learning objectives

    Design Creativity: Future Directions for Integrated Visualisation

    Get PDF
    The Architecture, Engineering and Construction (AEC) sectors are facing unprecedented challenges, not just with increased complexity of projects per se, but design-related integration. This requires stakeholders to radically re-think their existing business models (and thinking that underpins them), but also the technological challenges and skills required to deliver these projects. Whilst opponents will no doubt cite that this is nothing new as the sector as a whole has always had to respond to change; the counter to this is that design ‘creativity’ is now much more dependent on integration from day one. Given this, collaborative processes embedded in Building Information Modelling (BIM) models have been proffered as a panacea solution to embrace this change and deliver streamlined integration. The veracity of design teams’ “project data” is increasingly becoming paramount - not only for the coordination of design, processes, engineering services, fabrication, construction, and maintenance; but more importantly, facilitate ‘true’ project integration and interchange – the actualisation of which will require firm consensus and commitment. This Special Issue envisions some of these issues, challenges and opportunities (from a future landscape perspective), by highlighting a raft of concomitant factors, which include: technological challenges, design visualisation and integration, future digital tools, new and anticipated operating environments, and training requirements needed to deliver these aspirations. A fundamental part of this Special Issue’s ‘call’ was to capture best practice in order to demonstrate how design, visualisation and delivery processes (and technologies) affect the finished product viz: design outcome, design procedures, production methodologies and construction implementation. In this respect, the use of virtual environments are now particularly effective at supporting the design and delivery processes. In summary therefore, this Special Issue presents nine papers from leading scholars, industry and contemporaries. These papers provide an eclectic (but cognate) representation of AEC design visualisation and integration; which not only uncovers new insight and understanding of these challenges and solutions, but also provides new theoretical and practice signposts for future research

    Using tablets for e-assessment of project-based learning

    Get PDF
    Technology is confirmed to be an effective tool for assessment and feedback, in particular for computer-assisted assessment (Irons, 2008; Challis, 2005), producing feedback (Heinrich et al., 2009) and publishing feedback (Bloxham and Boyd, 2007; Denton, 2003; Denton et al., 2008). The arrival of affordable mobile devices has introduced a new means for enhancing the above practices (Fabian and MacLean, 2014; Plimmer and Mason, 2006; Salem, 2013). Student preferences to smart phones and tablet devices steer the technological innovation towards ubiquitous mobile connectivity. Inspired by the benefits of such life and study style, educators have started exploring the use of these technologies. Tablet computers prove to become their preferred choice as they resolve some of the limitations associated with the design, readability and comprehensiveness of the feedback for mobile devices with smaller screens (Strain-Seymour, 2013, Rootman-le Grange and Lutz, 2013). This paper reports how tablets and the Form Connext mobile app have been used for engaging a sample of 300 Business Studies students in in-class online assessment and designing and providing timely comprehensive feedback. The study has followed an action research strategy that is grounded on a continuous and dynamic process of reflection (Carr and Kemmis, 2003) on the effectiveness of assessment of student projects documented electronically through wikis and electronic portfolios. It refines the use of tablets for summative and formative assessment of the project-based learning tasks through three review cycles, each of which incorporated a Reflection and Improvements stage. The experience resulted in enhancement of assessment strategies and contribution to the development of contemporary models of learning through effective assessment and feedback (Carr and Kemmis, 2003). The results of the work confirm that tablet computers are an effective tool in assessing e-materials in larger classes for two primary reasons. Firstly, design of e-forms facilitates rigorous process of reflection and understanding assessment criteria that in turn benefit students when preparing for the assessment. Hence, legible and detailed feedback is produced anytime anywhere with synchronous updates within the marking team. Secondly, students benefit from immediate comprehensive feedback allowing them to reflect on and improve their understanding of subject matters, as well as to engage in discussing specific details of the work that are captured through the form. An unexpected outcome was the enhanced reputation and respect to the tutors amongst students, the triggering of student curiosity and enthusiasm in applying similar approach to their own work. The diffusion for the practice amongst other units and identifying other purposes for which the mobile app could be used are also seen as achievements exceeding the expectations of the project team

    Discovery Is Never By Chance: Designing for (Un)Serendipity

    No full text
    Serendipity has a long tradition in the history of science as having played a key role in many significant discoveries. Computer scientists, valuing the role of serendipity in discovery, have attempted to design systems that encourage serendipity. However, that research has focused primarily on only one aspect of serendipity: that of chance encounters. In reality, for serendipity to be valuable chance encounters must be synthesized into insight. In this paper we show, through a formal consideration of serendipity and analysis of how various systems have seized on attributes of interpreting serendipity, that there is a richer space for design to support serendipitous creativity, innovation and discovery than has been tapped to date. We discuss how ideas might be encoded to be shared or discovered by ‘association-hunting’ agents. We propose considering not only the inventor’s role in perceiving serendipity, but also how that inventor’s perception may be enhanced to increase the opportunity for serendipity. We explore the role of environment and how we can better enable serendipitous discoveries to find a home more readily and immediately

    TOWARDS A WITTGENSTEINEAN LADDER FOR THE UNIVERSAL VIRTUAL CLASSROOM (UVC)

    Get PDF
    The aim of this work is to move from the foreign dominated to the self-dominated by encouraging people to draw their own conclusions with the help of own rational consideration. Here a room as an environment that is encouraging innovation, which can be denoted as “Innovation Lab”, and making processes as can be regarded as “Smart Lab” is an essential base. The question related to this generalized self-organizational learning method investigated in our paper is how a UVC, which is a room that connects people from different physical places to one synchronous and virtual perceivable place, which is built on these preconditions, can be operated both resource and learning-efficient for both the course participants and the educational organization. A practical approach of implementing a virtual classroom concept, including informative tutorial-feedback, is developed conceptually that also accounts for and implements the results of reinforcement machine-learning methods in AI applications. The difference that makes the difference is gained by reimplementing the AI tools in an AI instrument, in a “Smart Lab” environment and that in the teaching environment. By means of this, a cascaded feedback-loop system is informally installed, which gains feedback at different levels of abstraction. By this learning on each stage, in a collaborative and together decentralized and sequential fashion takes place, as the selforganizational implementations lead implicitly, also by means of the in the course implemented tools, to increasingly self-control. As such in the course, a tool is implemented, as generalizations by means of reinforcement learnings are to be emergently foreseen by this method, which goes beyond the tools, that have already been implemented before. This AI-enhanced learning coevolution shall then, predictively, as well increase the potential of the course participants as the educational organization according to the Wittgensteinean parable: A ladder leading into a selfly-organized future

    Remarkable Objects: Supporting Collaboration in a Creative Environment

    Get PDF
    In this paper, we report the results of a field trial of a Ubicomp system called CAM that is aimed at supporting and enhancing collaboration in a design studio environment. CAM uses a mobile-tagging application which allows designers to collaboratively store relevant information onto their physical design objects in the form of messages, annotations and external web links. The purpose of our field trial was to explore the role of augmented objects in supporting and enhancing creative work. Our results show that CAM was used not only used to support participants’ mutual awareness and coordination but also to facilitate designers in appropriating their augmented design objects to be explorative, extendable and playful supporting creative aspects of design work. In general, our results show how CAM transformed static design objects into ‘remarkable’ objects that made the creative and playful side of cooperative design visible
    • 

    corecore