808 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Probabilistic route discovery for Wireless Mobile Ad Hoc Networks (MANETs)

    Get PDF
    Mobile wireless ad hoc networks (MANETs) have become of increasing interest in view of their promise to extend connectivity beyond traditional fixed infrastructure networks. In MANETs, the task of routing is distributed among network nodes which act as both end points and routers in a wireless multi-hop network environment. To discover a route to a specific destination node, existing on-demand routing protocols employ a broadcast scheme referred to as simple flooding whereby a route request packet (RREQ) originating from a source node is blindly disseminated to the rest of the network nodes. This can lead to excessive redundant retransmissions, causing high channel contention and packet collisions in the network, a phenomenon called a broadcast storm. To reduce the deleterious impact of flooding RREQ packets, a number of route discovery algorithms have been suggested over the past few years based on, for example, location, zoning or clustering. Most such approaches however involve considerably increased complexity requiring additional hardware or the maintenance of complex state information. This research argues that such requirements can be largely alleviated without sacrificing performance gains through the use of probabilistic broadcast methods, where an intermediate node rebroadcasts RREQ packets based on some suitable forwarding probability rather than in the traditional deterministic manner. Although several probabilistic broadcast algorithms have been suggested for MANETs in the past, most of these have focused on “pure” broadcast scenarios with relatively little investigation of the performance impact on specific applications such as route discovery. As a consequence, there has been so far very little study of the performance of probabilistic route discovery applied to the well-established MANET routing protocols. In an effort to fill this gap, the first part of this thesis evaluates the performance of the routing protocols Ad hoc On demand Distance Vector (AODV) and Dynamic Source Routing (DSR) augmented with probabilistic route discovery, taking into account parameters such as network density, traffic density and nodal mobility. The results reveal encouraging benefits in overall routing control overhead but also show that network operating conditions have a critical impact on the optimality of the forwarding probabilities. In most existing probabilistic broadcast algorithms, including the one used here for preliminary investigations, each forwarding node is allowed to rebroadcast a received packet with a fixed forwarding probability regardless of its relative location with respect to the locations of the source and destination pairs. However, in a route discovery operation, if the location of the destination node is known, the dissemination of the RREQ packets can be directed towards this location. Motivated by this, the second part of the research proposes a probabilistic route discovery approach that aims to reduce further the routing overhead by limiting the dissemination of the RREQ packets towards the anticipated location of the destination. This approach combines elements of the fixed probabilistic and flooding-based route discovery approaches. The results indicate that in a relatively dense network, these combined effects can reduce the routing overhead very significantly when compared with that of the fixed probabilistic route discovery. Typically in a MANET there are regions of varying node density. Under such conditions, fixed probabilistic route discovery can suffer from a degree of inflexibility, since every node is assigned the same forwarding probability regardless of local conditions. Ideally, the forwarding probability should be high for a node located in a sparse region of the network while relatively lower for a node located in a denser region of the network. As a result, it can be helpful to identify and categorise mobile nodes in the various regions of the network and appropriately adjust their forwarding probabilities. To this end the research examines probabilistic route discovery methods that dynamically adjust the forwarding probability at a node, based on local node density, which is estimated using number of neighbours as a parameter. Results from this study return significantly superior performance measures compared with fixed probabilistic variants. Although the probabilistic route discovery methods suggested above can significantly reduce the routing control overhead without degrading the overall network throughput, there remains the problem of how to select efficiently forwarding probabilities that will optimize the performance of a broadcast under any given conditions. In an attempt to address this issue, the final part of this thesis proposes and evaluates the feasibility of a node estimating its own forwarding probability dynamically based on locally collected information. The technique examined involves each node piggybacking a list of its 1-hop neighbours in its transmitted RREQ packets. Based on this list, relay nodes can determine the number of neighbours that have been already covered by a broadcast and thus compute the forwarding probabilities most suited to individual circumstances

    Distributed services for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network consists of certain nodes that communicate only through wireless medium and can move arbitrarily. The key feature of a mobile ad hoc network is the mobility of the nodes. Because of the mobility, communication links form and disappear as nodes come into and go out of each other's communica- tion range. Mobile ad hoc networks are particularly useful in situations like disaster recovery and search, military operations, etc. Research on mobile ad hoc networks has drawn a huge amount of attention recently. The main challenges for mobile ad hoc networks are the sparse resources and frequent mobility. Most of the research work has been focused on the MAC and routing layer. In this work, we focus on distributed services for mobile ad hoc networks. These services will provide some fundamental functions in developing various applications for mobile ad hoc networks. In particular, we focus on the clock synchronization, connected dominating set, and k-mutual exclusion problems in mobile ad hoc networks

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Personal and groupwise broadcasting system for social event networking

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Page 155 blank.Includes bibliographical references (p. 149-154).This thesis describes the design and development of a system that is aimed for personalized and group-wise broadcasts to collaboratively distribute information and to coordinate locally created events in infrastructure-free milieu. This system, called XCast, has two targets: One is to permit people to create personalized communicators, "broadcast stations" over mobile devices, for extemporaneous events or individually motivated presentations. The other is to provide people with a cognitive platform for social event awareness that informs what is happening around them and then timely coordinates the events. This system applies wireless/mobile peer-to-peer networking technologies, such as 802.11 ad-hoc and mesh networking. To achieve the targets, in the thesis, we focus on newly designing architecture of the cognitive platform and then developing a robust and agile protocol which makes it possible for the platform to reliably work in wireless ad-hoc/mesh networks. The former work is to build a group of broadcast stations into a distributed crystal-gazing system to be aware seasonably of what is going on in our surroundings. With respect to the latter, we propose a distributed protocol, dubbed "Broadcast Resource Schedule Protocol (BRSP)." It has broadcast operations more reliable and scalable in wireless ad-hoc/mesh networks via synchronization and neighbor knowledge schemes. In the end, the BRSP evolves a wireless peer-to-peer network into a cognitive network to support the platform. This system offers a riper breeding ground for creation of a platform for social event networking and of cooperative media for a local community. The value of this is in considering community networks that are matrices of social collaboration, rather than point connections, as well as sources of novel civic media initiated by grassroots.by Sung-Hyuck Lee.S.M

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    • …
    corecore