60 research outputs found

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Remote Programming of Multirobot Systems within the UPC-UJI Telelaboratories: System Architecture and Agent-Based Multirobot Control

    Get PDF
    One of the areas that needs further improvement within E-Learning environments via Internet (A big effort is required in this area if progress is to be made) is allowing students to access and practice real experiments in a real laboratory, instead of using simulations [1]. Real laboratories allow students to acquire methods, skills and experience related to real equipment, in a manner that is very close to the way they are being used in industry. The purpose of the project is the study, development and implementation of an E-Learning environment to allow undergraduate students to practice subjects related to Robotics and Artificial Intelligence. The system, which is now at a preliminary stage, will allow the remote experimentation with real robotic devices (i.e. robots, cameras, etc.). It will enable the student to learn in a collaborative manner (remote participation with other students) where it will be possible to combine the onsite activities (performed “in-situ” within the real lab during the normal practical sessions), with the “on-line” one (performed remotely from home via the Internet). Moreover, the remote experiments within the E-Laboratory to control the real robots can be performed by both, students and even scientist. This project is under development and it is carried out jointly by two Universities (UPC and UJI). In this article we present the system architecture and the way students and researchers have been able to perform a Remote Programming of Multirobot Systems via web

    Multistream realtime control of a distributed telerobotic system

    Get PDF

    Overview of some Command Modes for Human-Robot Interaction Systems

    Get PDF
    Interaction and command modes as well as their combination are essential features of modern and futuristic robotic systems interacting with human beings in various dynamical environments. This paper presents a synthetic overview concerning the most command modes used in Human-Robot Interaction Systems (HRIS). It includes the first historical command modes which are namely tele-manipulation, off-line robot programming, and traditional elementary teaching by demonstration. It then introduces the most recent command modes which have been fostered later on by the use of artificial intelligence techniques implemented on more powerful computers. In this context, we will consider specifically the following modes: interactive programming based on the graphical-user-interfaces, voice-based, pointing-on-image-based, gesture-based, and finally brain-based commands.info:eu-repo/semantics/publishedVersio

    Evaluation of gaming environments for mixed reality interfaces and human supervisory control in telerobotics

    No full text
    Telerobotics refers to a branch of technology that deals with controlling a robot from a distance. It is commonly used to access difficult environments, reduce operating costs, and to improve comfort and safety. However, difficulties have emerged in telerobotics development. Effective telerobotics requires maximising operator performance and previous research has identified issues which reduce operator performance, such as operator attention being divided across the numerous custom built interfaces and continuous operator involvement in a high workload situation potentially causing exhaustion and subsequent operator error. This thesis evaluates mixed reality and human supervisory control concepts in a gaming engine environment for telerobotics. This concept is proposed in order to improve the effectiveness of current technology in telerobotic interfaces. Four experiments are reported in this thesis which covers virtual gaming environments, mixed reality interfaces, and human supervisory control and aims to advance telerobotics technology. This thesis argues that gaming environments are useful for building telerobotic interfaces and examines the properties required for telerobotics. A useful feature provided by gaming environments is that of overlying video on virtual objects to support mixed reality interfaces. Experiments in this thesis show that mixed reality interfaces provide useful information without distracting the operator from the task. This thesis introduces two response models based on the planning process of human supervisory control: Adaptation and Queue response models. The experimental results show superior user performance under these two response models compared to direct/manual control. In the final experiment a large number of novice users, with a diversity of backgrounds, used a robot arm to push blocks into a hole by using these two response models. Further analyses on evaluating the user performance on the interfaces with two response models were found to be well fitted by a Weibull distribution. Operators preferred the interface with the Queue response model over the interface with the Adaptation response model, and human supervisory control over direct/manual control. It is expected that the increased sophistication of control commands in a production system will usually be greater than those that were tested in this thesis, where limited time was available for automation development. Where that is the case the increases in human productivity using human supervisory control found in this experiment can be expected to be greater. The research conducted here has shown that mixed reality in gaming environments, when combined with human supervisory control, offers a good route for overcoming limitations in current telerobotics technology. Practical applications would benefit by the application of these methods, making it possible for the operator to have the necessary information available in a convenient and non-distracting form, considerably improving productivity

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Framework for indoor video-based augumented reality applications

    Get PDF
    Augmented Reality (AR) has been proven to be useful in many fields such as medical surgery, military training, engineering design, tourist guiding, manufacturing and maintenance. Several AR systems and tracking tools have been reviewed and examined. Taking into consideration the different shortcomings of the available AR systems, a framework for indoor video-based AR applications is proposed to integrate four main components of AR applications, which are large scale virtual environment, mobile devices, interaction methods and video-tracking, in one system. The proposed framework benefits from the rapidly evolving technology in virtual modeling by combing GIS maps and 3D virtual models of cities and building interiors in one single platform. Interaction methods for AR applications are introduced, such as the automatic 3D picking which allows for a location-based data access. In addition, a practical method is proposed for the configuration and the deployment of video tracking. This method makes use of the XML mark-up language to allow for future extensions and simplified interchangeability. An implementation of the proposed approach is developed to demonstrate the feasibility of the framework. Different case studies are carried out to validate the applicability of the system and identify its benefits and limitations
    corecore