486 research outputs found

    Enhancing user fairness in OFDMA radio access networks through machine learning

    Get PDF
    The problem of radio resource scheduling subject to fairness satisfaction is very challenging even in future radio access networks. Standard fairness criteria aim to find the best trade-off between overall throughput maximization and user fairness satisfaction under various types of network conditions. However, at the Radio Resource Management (RRM) level, the existing schedulers are rather static being unable to react according to the momentary networking conditions so that the user fairness measure is maximized all time. This paper proposes a dynamic scheduler framework able to parameterize the proportional fair scheduling rule at each Transmission Time Interval (TTI) to improve the user fairness. To deal with the framework complexity, the parameterization decisions are approximated by using the neural networks as non-linear functions. The actor-critic Reinforcement Learning (RL) algorithm is used to learn the best set of non-linear functions that approximate the best fairness parameters to be applied in each momentary state. Simulations results reveal that the proposed framework outperforms the existing fairness adaptation techniques as well as other types of RL-based schedulers

    Enhancing user fairness in OFDMA radio access networks through machine learning

    Get PDF
    The problem of radio resource scheduling subject to fairness satisfaction is very challenging even in future radio access networks. Standard fairness criteria aim to find the best trade-off between overall throughput maximization and user fairness satisfaction under various types of network conditions. However, at the Radio Resource Management (RRM) level, the existing schedulers are rather static being unable to react according to the momentary networking conditions so that the user fairness measure is maximized all time. This paper proposes a dynamic scheduler framework able to parameterize the proportional fair scheduling rule at each Transmission Time Interval (TTI) to improve the user fairness. To deal with the framework complexity, the parameterization decisions are approximated by using the neural networks as non-linear functions. The actor-critic Reinforcement Learning (RL) algorithm is used to learn the best set of non-linear functions that approximate the best fairness parameters to be applied in each momentary state. Simulations results reveal that the proposed framework outperforms the existing fairness adaptation techniques as well as other types of RL-based schedulers

    A comparison of reinforcement learning algorithms in fairness-oriented OFDMA schedulers

    Get PDF
    Due to large-scale control problems in 5G access networks, the complexity of radioresource management is expected to increase significantly. Reinforcement learning is seen as apromising solution that can enable intelligent decision-making and reduce the complexity of differentoptimization problems for radio resource management. The packet scheduler is an importantentity of radio resource management that allocates users’ data packets in the frequency domainaccording to the implemented scheduling rule. In this context, by making use of reinforcementlearning, we could actually determine, in each state, the most suitable scheduling rule to be employedthat could improve the quality of service provisioning. In this paper, we propose a reinforcementlearning-based framework to solve scheduling problems with the main focus on meeting the userfairness requirements. This framework makes use of feed forward neural networks to map momentarystates to proper parameterization decisions for the proportional fair scheduler. The simulation resultsshow that our reinforcement learning framework outperforms the conventional adaptive schedulersoriented on fairness objective. Discussions are also raised to determine the best reinforcement learningalgorithm to be implemented in the proposed framework based on various scheduler settings

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization
    corecore