866 research outputs found

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Throughput analysis of ALOHA with cooperative diversity

    Get PDF
    Cooperative transmissions emulate multi-antenna systems and can improve the quality of signal reception. In this paper, we propose and analyze a cross layer random access scheme, C-ALOHA, that enables cooperative transmissions in the context of ALOHA system. Our analysis shows that over a fading channel C-ALOHA can improve the throughput by 30%, as compared to standard ALOHA protocol

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    A channel-condition and packet-length dependent scheduler in wireless OFDM systems

    Get PDF
    In this paper, a new scheduler, called Channel-Condition and Packet-Length Dependent Packet Generalized Processor Sharing (CPLD-PGPS) scheduler is proposed for orthogonal frequency-division multiplexing (OFDM) wireless communication systems. Based on PGPS, CPLD scheduler considers the condition of the physical channel and the length of packets at the same time, and optimally allocates the sub-carriers in a frame. With this scheduler, improved system BER, and correspondingly superior PER performance can be achieved. The system throughput is improved, while guaranteeing the required bandwidth, and providing long term fairness for all the traffic in the system. In order to reduce the algorithm complexity, a simplified CPLD is proposed, which maintains the system throughput as the original scheduler, and guarantees the system performance with properly set system parameters. Simulation results demonstrate the superior performance of the proposed scheduler. © 2004 IEEE.published_or_final_versio

    Combined Time and Code Division Scheduling for Enhanced Uplink Packet Access in WCDMA

    Get PDF

    CPLD-PGPS scheduling algorithm in wireless OFDM systems

    Get PDF
    In this paper, we propose a new scheduler for orthogonal frequency-division multiplexing (OFDM) wireless communication systems, called Channel-Condition and Packet-Length Dependent Packet Generalized Processor Sharing (CPLD-PGPS) scheduler. CPLD scheduler considers the condition of the physical channel and the length of packets at the same time, and optimally allocates the sub-carriers in a frame. With this scheduler, the system can achieve better system BER performance, and correspondingly superior PER performance. The system throughput is improved, at the same time the required bandwidth is guaranteed, and long term fairness for all the traffic in the system is provided. In order to reduce the algorithm complexity, a simplified CPLD is proposed, which maintains the system throughput as in the original scheduler, and guarantees the system performance with properly set system parameters. The superior performance of the proposed scheduler is demonstrated by simulation results. © 2004 IEEE.published_or_final_versio
    • …
    corecore