326 research outputs found

    Leveraging triplet loss for unsupervised action segmentation

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a novel fully unsupervised framework that learns action representations suitable for the action segmentation task from the single input video itself, without requiring any training data. Our method is a deep metric learning approach rooted in a shallow network with a triplet loss operating on similarity distributions and a novel triplet selection strategy that effectively models temporal and semantic priors to discover actions in the new representational space. Under these circumstances, we successfully recover temporal boundaries in the learned action representations with higher quality compared with existing unsupervised approaches. The proposed method is evaluated on two widely used benchmark datasets for the action segmentation task and it achieves competitive performance by applying a generic clustering algorithm on the learned representations.This work was supported by the project PID2019-110977GA-I00 funded by MCIN/ AEI/ 10.13039/501100011033 and by ”ESF Investing in your future”Peer ReviewedPostprint (author's final draft

    Interpretable Edge Enhancement and Suppression Learning for 3D Point Cloud Segmentation

    Full text link
    3D point clouds can flexibly represent continuous surfaces and can be used for various applications; however, the lack of structural information makes point cloud recognition challenging. Recent edge-aware methods mainly use edge information as an extra feature that describes local structures to facilitate learning. Although these methods show that incorporating edges into the network design is beneficial, they generally lack interpretability, making users wonder how exactly edges help. To shed light on this issue, in this study, we propose the Diffusion Unit (DU) that handles edges in an interpretable manner while providing decent improvement. Our method is interpretable in three ways. First, we theoretically show that DU learns to perform task-beneficial edge enhancement and suppression. Second, we experimentally observe and verify the edge enhancement and suppression behavior. Third, we empirically demonstrate that this behavior contributes to performance improvement. Extensive experiments performed on challenging benchmarks verify the superiority of DU in terms of both interpretability and performance gain. Specifically, our method achieves state-of-the-art performance in object part segmentation using ShapeNet part and scene segmentation using S3DIS. Our source code will be released at https://github.com/martianxiu/DiffusionUnit

    Structure-aware image denoising, super-resolution, and enhancement methods

    Get PDF
    Denoising, super-resolution and structure enhancement are classical image processing applications. The motive behind their existence is to aid our visual analysis of raw digital images. Despite tremendous progress in these fields, certain difficult problems are still open to research. For example, denoising and super-resolution techniques which possess all the following properties, are very scarce: They must preserve critical structures like corners, should be robust to the type of noise distribution, avoid undesirable artefacts, and also be fast. The area of structure enhancement also has an unresolved issue: Very little efforts have been put into designing models that can tackle anisotropic deformations in the image acquisition process. In this thesis, we design novel methods in the form of partial differential equations, patch-based approaches and variational models to overcome the aforementioned obstacles. In most cases, our methods outperform the existing approaches in both quality and speed, despite being applicable to a broader range of practical situations.Entrauschen, Superresolution und Strukturverbesserung sind klassische Anwendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Bestreben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen. Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungsund Superresolutionsverfahren, welche alle der folgenden Eingenschaften besitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robustheit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand in die Entwicklung von Modellen investieret, welche anisotrope Deformationen in bildgebenden Verfahren bewältigen können. In dieser Arbeit entwerfen wir neue Methoden in Form von partiellen Differentialgleichungen, patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Methoden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen einen breiteren Bereich praktischer Fragestellungen ab

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    corecore