2,116 research outputs found

    Robust Multilingual Part-of-Speech Tagging via Adversarial Training

    Full text link
    Adversarial training (AT) is a powerful regularization method for neural networks, aiming to achieve robustness to input perturbations. Yet, the specific effects of the robustness obtained from AT are still unclear in the context of natural language processing. In this paper, we propose and analyze a neural POS tagging model that exploits AT. In our experiments on the Penn Treebank WSJ corpus and the Universal Dependencies (UD) dataset (27 languages), we find that AT not only improves the overall tagging accuracy, but also 1) prevents over-fitting well in low resource languages and 2) boosts tagging accuracy for rare / unseen words. We also demonstrate that 3) the improved tagging performance by AT contributes to the downstream task of dependency parsing, and that 4) AT helps the model to learn cleaner word representations. 5) The proposed AT model is generally effective in different sequence labeling tasks. These positive results motivate further use of AT for natural language tasks.Comment: NAACL 201

    Robust input representations for low-resource information extraction

    Get PDF
    Recent advances in the field of natural language processing were achieved with deep learning models. This led to a wide range of new research questions concerning the stability of such large-scale systems and their applicability beyond well-studied tasks and datasets, such as information extraction in non-standard domains and languages, in particular, in low-resource environments. In this work, we address these challenges and make important contributions across fields such as representation learning and transfer learning by proposing novel model architectures and training strategies to overcome existing limitations, including a lack of training resources, domain mismatches and language barriers. In particular, we propose solutions to close the domain gap between representation models by, e.g., domain-adaptive pre-training or our novel meta-embedding architecture for creating a joint representations of multiple embedding methods. Our broad set of experiments demonstrates state-of-the-art performance of our methods for various sequence tagging and classification tasks and highlight their robustness in challenging low-resource settings across languages and domains.Die jüngsten Fortschritte auf dem Gebiet der Verarbeitung natürlicher Sprache wurden mit Deep-Learning-Modellen erzielt. Dies führte zu einer Vielzahl neuer Forschungsfragen bezüglich der Stabilität solcher großen Systeme und ihrer Anwendbarkeit über gut untersuchte Aufgaben und Datensätze hinaus, wie z. B. die Informationsextraktion für Nicht-Standardsprachen, aber auch Textdomänen und Aufgaben, für die selbst im Englischen nur wenige Trainingsdaten zur Verfügung stehen. In dieser Arbeit gehen wir auf diese Herausforderungen ein und leisten wichtige Beiträge in Bereichen wie Repräsentationslernen und Transferlernen, indem wir neuartige Modellarchitekturen und Trainingsstrategien vorschlagen, um bestehende Beschränkungen zu überwinden, darunter fehlende Trainingsressourcen, ungesehene Domänen und Sprachbarrieren. Insbesondere schlagen wir Lösungen vor, um die Domänenlücke zwischen Repräsentationsmodellen zu schließen, z.B. durch domänenadaptives Vortrainieren oder unsere neuartige Meta-Embedding-Architektur zur Erstellung einer gemeinsamen Repräsentation mehrerer Embeddingmethoden. Unsere umfassende Evaluierung demonstriert die Leistungsfähigkeit unserer Methoden für verschiedene Klassifizierungsaufgaben auf Word und Satzebene und unterstreicht ihre Robustheit in anspruchsvollen, ressourcenarmen Umgebungen in verschiedenen Sprachen und Domänen

    Robust Text Classification: Analyzing Prototype-Based Networks

    Full text link
    Downstream applications often require text classification models to be accurate, robust, and interpretable. While the accuracy of the stateof-the-art language models approximates human performance, they are not designed to be interpretable and often exhibit a drop in performance on noisy data. The family of PrototypeBased Networks (PBNs) that classify examples based on their similarity to prototypical examples of a class (prototypes) is natively interpretable and shown to be robust to noise, which enabled its wide usage for computer vision tasks. In this paper, we study whether the robustness properties of PBNs transfer to text classification tasks. We design a modular and comprehensive framework for studying PBNs, which includes different backbone architectures, backbone sizes, and objective functions. Our evaluation protocol assesses the robustness of models against character-, word-, and sentence-level perturbations. Our experiments on three benchmarks show that the robustness of PBNs transfers to NLP classification tasks facing realistic perturbations. Moreover, the robustness of PBNs is supported mostly by the objective function that keeps prototypes interpretable, while the robustness superiority of PBNs over vanilla models becomes more salient as datasets get more complex
    corecore