1,597 research outputs found

    Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive Survey and Evaluation

    Full text link
    Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research

    S4Net: Single Stage Salient-Instance Segmentation

    Full text link
    We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{https://github.com/RuochenFan/S4Net}

    Two Stream Scene Understanding on Graph Embedding

    Full text link
    The paper presents a novel two-stream network architecture for enhancing scene understanding in computer vision. This architecture utilizes a graph feature stream and an image feature stream, aiming to merge the strengths of both modalities for improved performance in image classification and scene graph generation tasks. The graph feature stream network comprises a segmentation structure, scene graph generation, and a graph representation module. The segmentation structure employs the UPSNet architecture with a backbone that can be a residual network, Vit, or Swin Transformer. The scene graph generation component focuses on extracting object labels and neighborhood relationships from the semantic map to create a scene graph. Graph Convolutional Networks (GCN), GraphSAGE, and Graph Attention Networks (GAT) are employed for graph representation, with an emphasis on capturing node features and their interconnections. The image feature stream network, on the other hand, focuses on image classification through the use of Vision Transformer and Swin Transformer models. The two streams are fused using various data fusion methods. This fusion is designed to leverage the complementary strengths of graph-based and image-based features.Experiments conducted on the ADE20K dataset demonstrate the effectiveness of the proposed two-stream network in improving image classification accuracy compared to conventional methods. This research provides a significant contribution to the field of computer vision, particularly in the areas of scene understanding and image classification, by effectively combining graph-based and image-based approaches
    • …
    corecore