4,369 research outputs found

    Highly Automated Formal Verification of Arithmetic Circuits

    Get PDF
    This dissertation investigates the problems of two distinctive formal verification techniques for verifying large scale multiplier circuits and proposes two approaches to overcome some of these problems. The first technique is equivalence checking based on recurrence relations, while the second one is the symbolic computation technique which is based on the theory of Gröbner bases. This investigation demonstrates that approaches based on symbolic computation have better scalability and more robustness than state-of-the-art equivalence checking techniques for verification of arithmetic circuits. According to this conclusion, the thesis leverages the symbolic computation technique to verify floating-point designs. It proposes a new algebraic equivalence checking, in contrast to classical combinational equivalence checking, the proposed technique is capable of checking the equivalence of two circuits which have different architectures of arithmetic units as well as control logic parts, e.g., floating-point multipliers

    Quality and Quantity in Robustness-Checking Using Formal Techniques

    Get PDF
    Fault tolerance is one of the main challenges for future technology scaling to tolerate transient faults. Various techniques at design level are available to catch and handle transient faults, e.g., Triple Modular Redundancy. An important but missing step is to verify the implementation of those techniques since the implementation might be buggy itself. The thesis is focusing on formally verifying digital circuits with respect to fault-tolerant aspects. It considers transient faults and basically checks whether these faults can influence the output behavior of sequential circuits for any kind of scenarios. As a result the designer is pin-pointed directly to critical parts of the design and gets a prove about the absence of faulty behavior for non-critical parts. The focus of the verification is completeness with respect to the analysis. Three issues need to be adequately addressed: 1) cover all input stimuli, 2) all possible transient faults, and, 3) all possibly exponential long (wrt. to number of state bits) propagation paths. All three issues are addressed in different engines. A tool called RobuCheck has been implemented and evaluated on different academic benchmarks from ITC'99 and industrial benchmarks from IBM

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    Unbounded Scalable Hardware Verification.

    Full text link
    Model checking is a formal verification method that has been successfully applied to real-world hardware and software designs. Model checking tools, however, encounter the so-called state-explosion problem, since the size of the state spaces of such designs is exponential in the number of their state elements. In this thesis, we address this problem by exploiting the power of two complementary approaches: (a) counterexample-guided abstraction and refinement (CEGAR) of the design's datapath; and (b) the recently-introduced incremental induction algorithms for approximate reachability. These approaches are well-suited for the verification of control-centric properties in hardware designs consisting of wide datapaths and complex control logic. They also handle most complex design errors in typical hardware designs. Datapath abstraction prunes irrelevant bit-level details of datapath elements, thus greatly reducing the size of the state space that must be analyzed and allowing the verification to be focused on the control logic, where most errors originate. The induction-based approximate reachability algorithms offer the potential of significantly reducing the number of iterations needed to prove/disprove given properties by avoiding the implicit or explicit enumeration of reachable states. Our implementation of this verification framework, which we call the Averroes system, extends the approximate reachability algorithms at the bit level to first-order logic with equality and uninterpreted functions. To facilitate this extension, we formally define the solution space and state space of the abstract transition system produced by datapath abstraction. In addition, we develop an efficient way to represent sets of abstract solutions involving present- and next-states and a systematic way to project such solutions onto the space of just the present-state variables. To further increase the scalability of the Averroes verification system, we introduce the notion of structural abstraction, which extends datapath abstraction with two optimizations for better classification of state variables as either datapath or control, and with efficient memory abstraction techniques. We demonstrate the scalability of this approach by showing that Averroes significantly outperforms bit-level verification on a number of industrial benchmarks.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133375/1/suholee_1.pd

    Towards Next Generation Sequential and Parallel SAT Solvers

    Get PDF
    This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology

    Enhancing Power Efficient Design Techniques in Deep Submicron Era

    Get PDF
    Excessive power dissipation has been one of the major bottlenecks for design and manufacture in the past couple of decades. Power efficient design has become more and more challenging when technology scales down to the deep submicron era that features the dominance of leakage, the manufacture variation, the on-chip temperature variation and higher reliability requirements, among others. Most of the computer aided design (CAD) tools and algorithms currently used in industry were developed in the pre deep submicron era and did not consider the new features explicitly and adequately. Recent research advances in deep submicron design, such as the mechanisms of leakage, the source and characterization of manufacture variation, the cause and models of on-chip temperature variation, provide us the opportunity to incorporate these important issues in power efficient design. We explore this opportunity in this dissertation by demonstrating that significant power reduction can be achieved with only minor modification to the existing CAD tools and algorithms. First, we consider peak current, which has become critical for circuit's reliability in deep submicron design. Traditional low power design techniques focus on the reduction of average power. We propose to reduce peak current while keeping the overhead on average power as small as possible. Second, dual Vt technique and gate sizing have been used simultaneously for leakage savings. However, this approach becomes less effective in deep submicron design. We propose to use the newly developed process-induced mechanical stress to enhance its performance. Finally, in deep submicron design, the impact of on-chip temperature variation on leakage and performance becomes more and more significant. We propose a temperature-aware dual Vt approach to alleviate hot spots and achieve further leakage reduction. We also consider this leakage-temperature dependency in the dynamic voltage scaling approach and discover that a commonly accepted result is incorrect for the current technology. We conduct extensive experiments with popular design benchmarks, using the latest industry CAD tools and design libraries. The results show that our proposed enhancements are promising in power saving and are practical to solve the low power design challenges in deep submicron era

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore