478 research outputs found

    Hop-Based dynamic fair scheduler for wireless Ad-Hoc networks

    Get PDF
    In a typical multihop Ad-Hoc network, interference and contention increase when flows transit each node towards destination, particularly in the presence of cross-traffic. This paper observes the relationship between throughput and path length, self-contention and interference and it investigates the effect of multiple data rates over multiple data flows in the network. Drawing from the limitations of the 802.11 specification, the paper proposes a scheduler named Hop Based Multi Queue (HBMQ), which is designed to prioritise traffic based on the hop count of packets in order to provide fairness across different data flows. The simulation results demonstrate that HBMQ performs better than a Single Drop Tail Queue (SDTQ) scheduler in terms of providing fairness. Finally, the paper concludes with a number of possible directions for further research, focusing on cross-layer implementation to ensure the fairness is also provided at the MAC layer. © 2013 IEEE

    Enhancing quality-of-service conditions using a cross-layer paradigm for ad-hoc vehicular communication

    Get PDF
    The Internet of Vehicles (IoVs) is an emerging paradigm aiming to introduce a plethora of innovative applications and services that impose a certain quality of service (QoS) requirements. The IoV mainly relies on vehicular ad-hoc networks (VANETs) for autonomous inter-vehicle communication and road-traffic safety management. With the ever-increasing demand to design new and emerging applications for VANETs, one challenge that continues to stand out is the provision of acceptable QoS requirements to particular user applications. Most existing solutions to this challenge rely on a single layer of the protocol stack. This paper presents a cross-layer decision-based routing protocol that necessitates choosing the best multi-hop path for packet delivery to meet acceptable QoS requirements. The proposed protocol acquires the information about the channel rate from the physical layer and incorporates this information in decision making, while directing traffic at the network layer level. Key performance metrics for the system design are analyzed using extensive experimental simulation scenarios. In addition, three data rate variant solutions are proposed to cater for various application-specific requirements in highways and urban environments. © 2013 IEEE

    A Framework for Service Differentiation and Optimization in Multi-hop Wireless Networks

    Get PDF
    In resource-constrained networks such as multi-hop wireless networks (MHWNs), service differentiation algorithms designed to address end users' interests (e.g. user satisfaction, QoS, etc.) should also consider efficient utilization of the scarce network resources in order to maximize the network's interests (e.g. revenue). For this very reason, service differentiation in MHWNs is quite different from the wired network scenario. We propose a service differentiation tool called the ``Investment Function'', which essentially captures the network's cumulative resource investment in a given packet at a given time. This investment value can be used by the network algorithm to implement specific service differentiation principles. As proof-of-concept, we use the investment function to improve fairness among simultaneous flows that traverse varying number of hops in a MHWN (multihop flow fairness). However, to attain the optimal value of a specific service differentiation objective, optimal service differentiation and investment function parameters may need to be computed. The optimal parameters can be computed by casting the service differentiation problem as a network flow problem in MHWNs, with the goal of optimizing the service differentiation objective. The capacity constraints for these problems require knowledge of the adjacent-node interference values, and constructing these constraints could be very expensive based on the transmission scheduling scheme used. As a result, even formulating the optimization problem may take unacceptable computational effort or memory or both. Under optimal scheduling, the adjacent node interference values (and thus the capacity constraints) are not only very expensive to compute, but also cannot be expressed in polynomial form. Therefore, existing optimization techniques cannot be directly applied to solve optimization problems in MHWNs. To develop an efficient optimization framework, we first model the MHWN as a Unit Disk Graph (UDG). The optimal transmission schedule in the MHWN is related to the chromatic number of the UDG, which is very expensive to compute. However, the clique number, which is a lower bound on the chromatic number, can be computed in polynomial time in UDGs. Through an empirical study, we obtain tighter bounds on the ratio of the chromatic number to clique number in UDGs, which enables us to leverage existing polynomial time clique-discovery algorithms to compute very close approximations to the chromatic number value. This approximation not only allows us to quickly formulate the capacity constraints in polynomial form, but also allows us to significantly deviate from the traditional approach of discovering all or most of the constraints \textit{a priori}; instead, we can discover the constraints as needed. We have integrated this approach of constraint-discovery into an active-set optimization algorithm (Gradient Projection method) to solve network flow problems in multi-hop wireless networks. Our results show significant memory and computational savings when compared to existing methods

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    A Novel Packet Aggregation Mechanism for Enhancing VoIP Performance on IEEE 802.11 Wireless Mesh Networks

    Get PDF
    In 802.11 Wireless Mesh Network (WMN), bandwidth will be wasted much for transferring VoIP flows since each voice frame must contain relatively large amount of protocol data. “Packet Aggregation” mechanism can be applied to merge the voice data of multiple VoIP flows into one frame for transmission. It reduces the waste on bandwidth and increases the maximum number of successful VoIP calls. In addition, the mechanism “MCF controlled channel access” (MCCA) defined in 802.11 standard can be used to obtain better QoS than adopting default EDCA mechanism. In MCCA, mesh stations which wants to transfer VoIP flows can reserve time intervals of the medium for transmission and this reservation will be advertised to their neighbors. It is why MCCA causes less medium contentions than EDCA. In this paper, a mechanism to transfer VoIP flows in IEEE 802.11 WMN by MCCA with packet aggregation scheme is proposed. The effectiveness of the proposed mechanism is shown by simulation results. In addition, the problem named as Routing-Packet Aggregation / De-aggregation-Scheduling optimization problem (abbr. RPADS problem) derived from the proposed mechanism is also studied. A heuristic algorithm for RPADS problem to maximize the total number of supported calls is also proposed

    OPTIMISING APPLICATION PERFORMANCE WITH QOS SUPPORT IN AD HOC NETWORKS

    Get PDF
    The popularity of wireless communication has increased substantially over the last decade, due to mobility support, flexibility and ease of deployment. Among next generation of mobile communication technologies, Ad Hoc networking plays an important role, since it can stand alone as private network, become a part of public network, either for general use or as part of disaster management scenarios. The performance of multihop Ad Hoc networks is heavily affected by interference, mobility, limited shared bandwidth, battery life, error rate of wireless media, and the presence of hidden and exposed terminals. The scheduler and the Medium Access Control (MAC) play a vital role in providing Quality of Service (QoS) and policing delay, end-to-end throughput, jitter, and fairness for user application services. This project aims to optimise the usage of the available limited resources in terms of battery life and bandwidth, in order to reduce packet delivery time and interference, enhance fairness, as well as increase the end-to-end throughput, and increase the overall network performance. The end-to-end throughput of an Ad Hoc network decays rapidly as the hop count between the source and destination pair increases and additional flows injected along the path of an existing flow affects the flows arriving from further away; in order to address this problem, the thesis proposes a Hop Based Dynamic Fair Scheduler that prioritises flows subject to the hop count of frames, leading to a 10% increase in fairness when compared to a IEEE 802.11b with single queue. Another mechanism to improve network performance in high congestion scenarios is network-aware queuing that reduces loss and improve the end-to-end throughput of the communicating nodes, using a medium access control method, named Dynamic Queue Utilisation Based Medium Access Control (DQUB-MAC). This MAC provides higher access probability to the nodes with congested queue, so that data generated at a high rate can be forwarded more effectively. Finally, the DQUB-MAC is modified to take account of hop count and a new MAC called Queue Utilisation with Hop Based Enhanced Arbitrary Inter Frame Spacing (QU-EAIFS) is also designed in this thesis. Validation tests in a long chain topology demonstrate that DQUB-MAC and QU-EAIFS increase the performance of the network during saturation by 35% and 40% respectively compared to IEEE 802.11b. High transmission power leads to greater interference and represents a significant challenge for Ad Hoc networks, particularly in the context of shared bandwidth and limited battery life. The thesis proposes two power control mechanisms that also employ a random backoff value directly proportional to the number of the active contending neighbours. The first mechanism, named Location Based Transmission using a Neighbour Aware with Optimised EIFS for Ad Hoc Networks (LBT-NA with Optimised EIFS MAC), controls the transmission power by exchanging location information between the communicating nodes in order to provide better fairness through a dynamic EIFS based on the overheard packet length. In a random topology, with randomly placed source and destination nodes, the performance gain of the proposed MAC over IEEE 802.11b ranges from approximately 3% to above 90% and the fairness index improved significantly. Further, the transmission power is directly proportional to the distance of communication. So, the performance is high and the durability of the nodes increases compared to a fixed transmission power MAC such as IEEE 802.11b when communicating distance is shorter. However, the mechanism requires positional information, therefore, given that location is typically unavailable, a more feasible power control cross layered system called Dynamic Neighbour Aware – Power controlled MAC (Dynamic NA -PMAC)is designed to adjust the transmission power by estimating the communicating distance based on the estimated overheard signal strength. In summary, the thesis proposes a number of mechanisms that improve the fairness amongst the competing flows, increase the end-to-end throughput, decrease the delay, reduce the transmission power in Ad Hoc environments and substantially increase the overall performance of the network

    QoS-Based and Secure Multipath Routing in Wireless Sensor Networks

    Get PDF
    With the growing demand for quality of service (QoS) aware routing protocols in wireless networks, QoS-based routing has emerged as an interesting research topic. A QoS guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. Furthermore, due to the increased use of sensor nodes in a variety of application fields, WSNs need to handle heterogeneous traffic with diverse priorities to achieve the required QoS. In this thesis, we investigate the problem of providing multi-QoS in routing protocols for WSNs. In particular, we investigate several aspects related to the application requirements and the network states and resources. We present multi-objective QoS aware routing protocol for WSNs that uses the geographic routing mechanism combined with the QoS requirements to meet diverse application requirements by considering the changing conditions of the network. The protocol formulates the application requirements with the links available resources and conditions to design heuristic neighbor discovery algorithms. Also, with the unlimited resource at the sink node, the process of selecting the routing path/paths is assigned to the sink. Paths selection algorithms are designed with various goals in order to extend network lifetime, enhance the reliability of data transmission, decrease end-to-end delay, achieve load balancing and provide fault tolerance. We also develop a cross-layer routing protocol that combines routing at network layer and the time scheduling at the MAC layer with respect to delay and reliability in an energy efficient way. A node-disjoint multipath routing is used and a QoS-aware priority scheduling considering MAC layer is proposed to ensure that real time and non-real time traffic achieve their desired QoS while alleviating congestion in the network. Additionally, we propose new mechanism for secure and reliable data transmission in multipath routing for WSNs. Different levels of security requirements are defined and depending on these requirements, a selective encryption scheme is introduced to encrypt selected number of coded fragments in order to enhance security and thereby reduce the time required for encryption. Node-disjoint multipath routing combined with source coding is used in order to enhance both security and reliability of data transmission. Also, we develop an allocation strategy that allocates fragments on paths to enhance both the security and probability of successful data delivery. Analysis and extensive simulation are conducted to study the performance of all the above proposed protocols

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mitigation of packet loss with end-to-end delay in wireless body area network applications

    Get PDF
    The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN
    • …
    corecore