13 research outputs found

    Enhancing PHY Security of MISO NOMA SWIPT Systems With a Practical Non-Linear EH Model

    Get PDF
    Non-orthogonal multiple-access (NOMA) and simultaneous wireless information and power transfer (SWIPT) are promising techniques to improve spectral efficiency and energy efficiency. However, the security of NOMA SWIPT systems has not received much attention in the literature. In this paper, an artificial noise-aided beamforming design problem is studied to enhance the security of a multiple-input single-output NOMA SWIPT system where a practical non-linear energy harvesting model is adopted. The problem is non-convex and challenging to solve. Two algorithms are proposed to tackle this problem based on semidefinite relaxation (SDR) and successive convex approximation. Simulation results show that a performance gain can be obtained by using NOMA compared to the conventional orthogonal multiple access. It is also shown that the performance of the algorithm using a cost function is better than the algorithm using SDR at the cost of a higher computation complexity.Comment: This paper has been accepted by ICC 2018 worksho

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations

    Security Improvement for Energy Harvesting based Overlay Cognitive Networks with Jamming-Assisted Full-Duplex Destinations

    Get PDF
    This work investigates the secrecy capability of energy harvesting based overlay cognitive networks (EHOCNs). To this end, we assume that a message by a licensed transmitter is relayed by an unlicensed sender. Critically, the unlicensed sender uses energy harvested from licensed signals, enhancing the overall energy efficiency and maintaining the integrity of licensed communications. To secure messages broadcast by the unlicensed sender against the wire-tapper, full-duplex destinations - unlicensed recipient and licensed receiver - jam the eavesdropper at the same time they receive signals from the unlicensed sender. To this effect, we derive closed-form formulas for the secrecy outage probability, which then quantify the security performance of both unlicensed and licensed communications for EHOCNs with jamming-assisted full-duplex destinations, namely EHOCNwFD. In addition, optimum operating parameters are established, which can serve as essential design guidelines of such systems.acceptedVersionPeer reviewe

    Signal Processing Algorithms for MIMO-NOMA Based 6G Networks

    Get PDF

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A
    corecore