252 research outputs found

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    Delay analysis of social group multicast-aided content dissemination in cellular system

    No full text
    Based on the common interest of mobile users (MUs) in a social group, the dissemination of content across the social group is studied as a powerful supplement to conventional cellular communication with the goal of improving the delay performance of the content dissemination process. The content popularity is modelled by a Zipf distribution in order to characterize the MUs’ different interests in different contents. The Factor of Altruism (FA) terminology is introduced for quantifying the willingness of content owners to share their content. We model the dissemination process of a specific packet by a pure-birth based Markov chain and evaluate the statistical properties of both the network’s dissemination delay as well as of the individual user-delay. Compared to the conventional base station (BS)- aided multicast, our scheme is capable of reducing the average dissemination delay by about 56.5%. Moreover, in contrast to the BS-aided multicast, increasing the number of MUs in the target social group is capable of reducing the average individual userdelay by 44.1% relying on our scheme. Furthermore, our scheme is more suitable for disseminating a popular piece of content
    • …
    corecore