4,300 research outputs found

    ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ์ค‘๊ตญ ๊ต์‚ฌ์˜ ์ธ์‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ, 2021. 2. ์กฐ์˜ํ™˜.์ตœ๊ทผ ๊ต์œก ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ๋„์ž…์ด ํฐ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ AI ๊ธฐ์ˆ ๊ณผ ํ•™์Šต ๋ถ„์„์ด ๊ฒฐํ•ฉํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ์ง€๊ธˆ๊ป ์‹คํ˜„๋˜๊ธฐ ์–ด๋ ค์› ๋˜ ๋งž์ถคํ˜• ํ•™์Šต(personalized learning)๊ณผ ์ ์‘์  ํ•™์Šต(adaptive learning)์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ(AI-based education platform)์€ ํ•™์Šต์ž์˜ ํ–‰๋™ ์ถ”์  ๋“ฑ์„ ํ†ตํ•ด ์ด๋“ค์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ์ง„๋‹จ์„ ์ œ๊ณตํ•œ ๋’ค ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํ•™์Šต์ž์—๊ฒŒ ์ธ์ง€ ์ˆ˜์ค€์— ๋งž๋Š” ๋งž์ถคํ˜• ํ•™์Šต์ž์›๊ณผ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•œ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ๊ต์‚ฌ์™€ ํ•™์ƒ์—๊ฒŒ ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋งž์ถคํ˜• ํ•™์Šต์— ๊ธ์ •์ ์ธ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋„ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ๊ฐœ๋ฐœ์˜ ์ฐจ์›์—์„œ๋‚˜ ์—„๋ฐ€ํ•œ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ํšจ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ๊ต์‚ฌ์˜ ์ธ์‹๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ์—ˆ๋‹ค. ๊ต์‚ฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ์‚ฌ์šฉ์ž์ด๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ๊ต์œก ๋„์ž…์— ์žˆ์–ด ๊ต์‚ฌ๋“ค์˜ ์ธ์‹๊ณผ ์˜๊ฒฌ์€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ต์‚ฌ๋“ค์˜ ์ธ์‹์„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์•„๋ž˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์งˆ์  ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ์ค‘ํ•™๊ต ๊ต์œก์— ํ™œ์šฉ ์žˆ์–ด ์–ด๋– ํ•œ ์žฅ์ ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋‘˜์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ๊ณผ ์ค‘ํ•™๊ต ๊ต์ˆ˜ ํ™œ๋™ ์š”์†Œ ๊ฐ„ ์–ด๋– ํ•œ ๋ชจ์ˆœ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ์…‹์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ค‘ํ•™๊ต ๊ต์œก์— ๋„์ž…ํ•  ๋•Œ ๋ฌด์—‡์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์‹ฌ์ธต ๋ฉด๋‹ด์„ ํ•˜์˜€๋‹ค. ๋ฌธํ—Œ ๋ฆฌ๋ทฐ๋ฅผ ํ†ตํ•ด ๋ฉด๋‹ด ์งˆ๋ฌธ์ง€๋ฅผ ์„ค๊ณ„ํ•˜๋˜ ๋ˆˆ๋ฉ์ดํ‘œ์ง‘๋ฒ• (snowball sampling)์„ ํ†ตํ•ด ์ค‘๊ตญ ์ค‘ํ•™๊ต ๊ต์‚ฌ 14๋ช…์„ ์—ฐ๊ตฌ์ฐธ์—ฌ์ž๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ๊ต์‚ฌ๋“ค์€ ๋ชจ๋‘ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ ๊ฒฝํ—˜์ด ์žˆ์œผ๋ฉฐ ๊ฐ ๊ต์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์•ฝ 1์‹œ๊ฐ„ ์ •๋„ ๋ฉด๋‹ด์„ ์ง„ํ–‰ํ•˜๊ณ  ๋…น์Œํ•˜์˜€๋‹ค. ๋ฉด๋‹ด์ด ๋๋‚œ ํ›„ ๋…น์Œ ๋‚ด์šฉ์„ ์ „์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ฃผ์ œ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉด๋‹ด ๋‚ด์šฉ์„ ์ดˆ๊ธฐ ์ฝ”๋“œ ์ƒ์„ฑํ•˜๊ณ  ๋ฉด๋‹ด ์ž๋ฃŒ ์†์—์„œ ์ฃผ์ œ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ํŠนํžˆ ์—ฐ๊ตฌ ๋ฌธ์ œ 2๋ฒˆ์˜ ๊ฒฝ์šฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ํ™œ์šฉ๊ณผ ๊ต์ˆ˜ ํ•™์Šตํ™œ๋™ ๋‚ด ์—ฌ๋Ÿฌ ์š”์†Œ ๊ฐ„์˜ ๋ชจ์ˆœ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ™œ๋™์ด๋ก ์„ ์—ฐ๊ตฌ์˜ ํ‹€๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์—ฐ๊ตฌ๋ฌธ์ œ 1์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 2์— ๋Œ€ํ•œ ์ฃผ์ œ 6๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 3์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์žฅ์ ์— ๋Œ€ํ•ด ์ฆ‰๊ฐ์ ์ธ ํ”ผ๋“œ๋ฐฑ ์ œ๊ณต, ๊ต์ˆ˜ํ•™์Šต ์ง€์›, ๊ต์‚ฌ์˜ ์—…๋ฌด๋Ÿ‰ ๊ฐ์†Œ ๋“ฑ์œผ๋กœ ์ธ์‹ํ•˜์˜€๊ณ , ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ๊ต์ˆ˜ํ•™์Šต ์ž์›์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์‚ฌ์šฉ์— ์žˆ์–ด ๊ธฐ์กด์˜ ๊ต์ˆ˜ํ•™์Šต ํ™œ๋™๊ณผ ์ƒ์ถฉ๋œ ๋ถ€๋ถ„์ด ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์ถ”์ฒœ ๋ชจ๋ธ์ด ์ฐจ๋ณ„ํ™”๋œ ํ•™์ƒ๋“ค์—๊ฒŒ ์ž˜ ์ ์šฉ๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ํ•™์Šต ์ž์›์„ ์ž˜ ๋ถ„๋ฅ˜๋˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ต์‚ฌ๋“ค์ด ์‚ฌ์šฉํ•˜๊ธฐ ๋ถˆํŽธํ•˜๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ด์šฉํ•  ๋•Œ ๊ต์‚ฌ์˜ ์ง€์ ์žฌ์‚ฐ๊ถŒ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๋ช…ํ™•ํ•œ ๊ทœ์ œ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํ•™๋ถ€๋ชจ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ํ•™์Šต์ž์˜ ์ธํ„ฐ๋„ท ๋‚จ์šฉ๊ณผ ์‹œ๋ ฅ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ์šฐ๋ คํ•˜์˜€๋‹ค. ๋˜ ์ค‘๊ตญ์˜ ์‚ฌํšŒ๋ฌธํ™”์  ๋ฐฐ๊ฒฝ๊ณผ ๊ต์œก ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐ ํ•™์ƒ๋“ค์˜ ๊ธ€์”จ ์“ฐ๊ธฐ ๋Šฅ๋ ฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•™๊ต ๋‚ด ์ „์ž๊ธฐ๊ธฐ ์‚ฌ์šฉ ์ œํ•œ๋„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์˜ ์ง€์†์„ฑ๊ณผ ํšจ์œจ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ์œ„์˜ ๋ฌธ์ œ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ๊ทœ์น™ ๋งˆ๋ จ๊ณผ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์™„ํ™”๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ต์‚ฌ์˜ ์‹ค์ œ ์š”๊ตฌ์— ๋งž๊ฒŒ ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋„๋ก ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๊ฐœ๋ฐœ ๊ณผ์ •์— ๊ต์œก ์ „๋ฌธ๊ฐ€์™€ ๊ต์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์ธ์‹์„ ํƒ์ƒ‰ํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์ˆ˜ํ•™์Šต์—์„œ์˜ ์žฅ์ ๊ณผ ๋ฌธ์ œ์ ์„ ๋ฐํ˜”๋‹ค. ์•„์šธ๋Ÿฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์œก ๋ถ„์•ผ์— ๋Œ€๊ทœ๋ชจ๋กœ ๋„์ž…๋  ์ˆ˜ ์žˆ๋„๋ก ๊ทœ์น™, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ๊ต์œก ๊ณตํ•™์˜ ์ฐจ์›์—์„œ ์‚ฌ์šฉ ๊ทœ๋ฒ”๊ณผ ๊ธฐ์ˆ  ๊ฐœ์„ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํƒ์ƒ‰ํ•œ ๋‚ด์šฉ์ด ํ–ฅํ›„ ๊ต์œก ๋ถ„์•ผ์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๋„์ž…์— ํ™œ์šฉ๋œ๋‹ค๋ฉด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ๋ฐœ์ „์—๋„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.In recent years, the introduction of artificial intelligence (AI) in education has attracted widespread attention. In particular, the AI-based education platform based on the combination of AI technology and learning analysis brings new light to the long-standing difficulties in personalized learning and adaptive learning. The AI-based education platform analyzes learners' characteristics by collecting their data and tracking their learning behavior. It then generates cognitive diagnosis for learners and provides them with personalized learning resources and adaptive feedback that match their cognitive level based on systematic analysis. With the help of the AI-based education platform, teachers and students can get real-time educational data and analysis result๏ผŒas well as the feedback and treatment corresponding to the results. Previous studies have already demonstrated and proved its positive significance to personalized learning. However, these studies mostly start from a model development perspective or in a rigorous laboratory environment. There has been little research on teachers' perceptions of AI-based education platform. As a direct user of AI educational technologies, teachers' perceptions and suggestions are vital for introducing AIEd in education. In this study, the researcher explored teachers' perceptions of using AI-based education platform in teaching. The study conducted qualitative research to address the following research questions: 1) How do Chinese teachers perceive the advantages of AI-based education platforms for teaching and learning in secondary school? 2) How do Chinese teachers perceive the contradictions between AI-based education platforms and the secondary school system? 3๏ผ‰How do Chinese teachers suggest applying AI-based education platforms in secondary school? And it referred to the in-depth online interview with Chinese teachers who had experience with AI-based education platform. Interview questions were constructed through the literature review, and 14 secondary school teachers were selected by the snowball sampling method. The interviews lasted for an average of one hour per teacher and were transcribed from the audio recordings to text documents when finished. Afterward, the data were analyzed using thematic analysis, including generating initial codes, searching and reviewing the categories, and deriving the themes finally. Notably, for research question two, the researcher used the activity theory framework to analyze the contradictions among the use of the AI-based education platform and the various elements of the teaching and learning activities. Finally, four themes for research question 1, six themes for research question 2, and four themes for research question 3 were derived. As for the advantages, teachers believe that AI-based education platforms can provide instant feedback, targeted and systematic teaching support, and reduce teachers' workload. At the same time, AI-based education platforms can also integrate teaching resources in different areas. Teachers also recognized that the AI-based education platforms might trigger contradictions in existing teaching activities. They are aware of the situation that the recommended model of the AI-based education platform is not suitable for all levels of students; that a large number of learning resources are not classified properly enough to meet the needs of teachers, and that there lack clear rules and regulations to protect teachers' intellectual property rights when using the platform. Besides, parents are also concerned about the potential risk of internet addiction and vision problems using AI-based education platforms. Moreover, the use of the AI-based education platform may also affect students' ability to write Chinese characters due to the socio-historical background and educational characteristics in China. Furthermore, the restricted use of electronic devices on campus may also impact the consistent and effective education data collection. Teachers believe that these problems can be solved by improving rules and AI technology. Moreover, to make the platform more in line with the actual teaching requirements, teachers and education experts can also be involved in the development process of AI-based education platform. This study explored how Chinese teachers perceive the AI-based education platform and found that the AI-based education platform was conducive to personalized teaching and learning. At the same time, this study put forward some suggestions from the perspective of rules, AI technology, and educational technology, hoping to provide a good value for the future large-scale introduction of AI-based education platforms in education.CHAPTER 1. INTRODUCTION 1 1.1. Problem Statement 1 1.2. Purpose of Research 7 1.3. Definition of Terms 8 CHAPTER 2. LITERATURE REVIEW 10 2.1. AI in Education 10 2.1.1 AI for Learning and Teaching 10 2.1.2 AI-based Education Platform 14 2.1.3 Teachers' Perception on AI-based Education Platform 18 2.2. Activity Theory 20 CHAPTER 3. RESEARCH METHOD 23 3.1. Research Design 23 3.2. Participants 25 3.3. Instrumentation 26 3.3.1 Potential Value of AI System in Education 26 3.4. Data Collection 33 3.5. Data Analysis 34 CHAPTER 4. FINDINGS 36 4.1. Advantages of Using AI-based Education Platform 36 4.1.1 Instant Feedback 37 4.1.2 Targeted and Systematic Teaching Support 42 4.1.3 Educational Resources Sharing 46 4.1.4 Reducing Workload 49 4.2. Tensions of Using AI-based Education Platform 51 4.2.1 Inadequately Meet the Needs of Teachers 52 4.2.2 Failure to Satisfy Low and High Achievers 54 4.2.3 Intellectual Property Violation 56 4.2.4 Guardian's Concern 57 4.2.5 School Rules about the Use of Electronic Devices 58 4.2.6 Implication for Chinese Character Education 59 4.3. Suggestion of Using AI-based Education Platform 61 4.3.1 Improving Rules of Using the AI-based Education Platform 61 4.3.2 Improving Rules of Protecting Teachers Right 62 4.3.3 Improving AI Technology 64 4.3.4 Participatory Design 66 CHAPTER 5. DISCUSSION AND CONCLUSION 68 5.1. Discussion 68 5.2. Conclusion 72 REFERENCE 75 APPENDIX 1 98 APPENDIX 2 100 ๊ตญ๋ฌธ์ดˆ๋ก 112Maste

    Enhancing Students' Metacognition via AI-Driven Educational Support Systems

    Get PDF
    As the penetration of digital technology deepens and the demands for educational modernization grow, attention is increasingly being drawn towards the application of artificial intelligence (AI) in the field of education. Especially in educational practice, the optimization of studentsโ€™ learning experiences and the enhancement of their metacognitive abilities through AI technology have captivated the interest of numerous educators and scholars. Metacognition, which represents a core skill in student self-regulation and self-management, has a significant impact on student learning outcomes and quality. However, current educational support systems primarily rely upon traditional methods of data collection and analysis, which have limitations in terms of real-time responsiveness, granularity, and comprehensiveness. The present research aims to investigate the integration of AI technology with a specific focus on the learning process through educational support systems and the development of a cooperative teaching interaction model. This will ultimately enhance the development of studentsโ€™ metacognitive abilities more effectively

    The effect of personalised system of instruction on technical college studentsโ€™ achievement in basic electricity

    Get PDF
    Abstracts in English and Northern SothoThe study determined the effect of a personalised system of instruction (PSI) teaching model on studentsโ€™ achievement in Basic Electricity in technical colleges. The behaviourism, social cognitive, and mastery learning theories framed the study. The study employed a pre-test/post-test non-equivalent control group, and a non-randomised, quasi-experimental design with a 2 x 2 x 2 factorial matrix in which the treatment operates at two levels crossed with gender and school location. The population of the study consisted of all year-two students of engineering-related trades in all the technical colleges in Osun State, Nigeria. Using the purposive sampling technique, four technical colleges with n = 152 Basic Electricity students and four teachers participated in the study. Two schools (one urban and one rural) of which urban n = 57 and rural n = 30, formed the experimental group (n = 87), and the other two schools (one urban with n = 39 and one rural with n = 26) formed the control group (n = 65). The personalised system of instruction was implemented in the two experimental schools by the respective Basic Electricity teachers who, as research assistants, had been trained on the use of the strategies of the personalised system of instruction in teaching Basic Electricity. The two control schools were also taught by their teachers using the conventional lecture method (CLM). Intact classes participated in the study, as it was not possible to randomly select participants for the study. The study lasted six weeks (one week for training and five weeks for the main study). Seven research questions and fourteen research hypotheses were raised, answered, and tested in the study. The quantitative data were collected using standardised achievement tests in Basic Electricity and a Studentsโ€™ Attitude to Basic Electricity questionnaire. The instruments used were pilot-tested and the results were computed using the Kuder-Richardson (K-R) 20 formula and Cronbach-alpha, which gave r = 0.937 for the Basic Electricity achievement tests and ฮฑ = 0.952 for the Studentsโ€™ Attitude to Basic Electricity questionnaires. Data collected from the study were analysed using the frequency count, percentage, bar chart and mean for the research questions and the Analysis of Covariance (ANCOVA) for the hypotheses tested at the 0.05 level of significance. The results of this study indicated that the students in the experimental group performed significantly better than their counterparts in the control group in the Basic Electricity achievement scores. Male students taught Basic Electricity using PSI and CLM performed better than their female counterparts. Students from schools located in the urban area taught Basic Electricity using PSI and CLM performed better in the mean achievement scores than students from schools located in the rural area. The experimental group had a higher mean attitude score than the control group. Female students taught Basic Electricity using the PSI model had a higher mean attitude score than their male counterparts. Students from the schools located in the urban area taught Basic Electricity using PSI had a higher mean attitude score than their counterparts from the rural schools. There was a statistically highly significant main effect of treatment (PSI) on the achievement of students in Basic Electricity [F (1,143) = 171.937, P < .05, ฮท2 = .546]. There was also a significant main effect of gender on technical college studentsโ€™ achievement in Basic Electricity [F (1,143) = 43.943, P < .05, ฮท2 = .235]. Furthermore, there was a significant main effect of school location on technical college studentsโ€™ achievement in Basic Electricity [F (1,143) = 17.581, P < .05, ฮท2 = .109]. There was a significant interaction effect of the personalised system of instruction and school location on technical college studentsโ€™ learning outcomes in Basic Electricity [F (1,143) = 4.191; P = .042, ฮท2 = .028] and the interaction was ordinal, showing that the interaction effect was stronger with students taught Basic Electricity using the PSI. There was a highly significant effect of the personalised system of instruction on the attitude of students to Basic Electricity, [F (1,143) = 11.863, P < .05, ฮท2 = .077]. Therefore, it is strongly recommended that Basic Electricity teachers use PSI instructional strategies in their classes to facilitate studentsโ€™ performance. Basic Electricity teachers should re-assess their classroom instructional practice to accommodate a shift from an instructional practice that makes learners passive listeners, to a practice that engages learners actively in the instructional processes. Furthermore, technical teachers should also be exposed to different enhancement strategies that will assist them in taking care of individual differences between students in the classroom. This will help students develop positive attitudes towards Basic Electricity, have self-confidence, and be more positively disposed towards obtaining good results in Basic Electricity. There should be adequate provision of the basic facilities necessary for the effective implementation of a PSI approach to teaching and learning Basic Electricity. As indicated, PSI could also positively influence the studentsโ€™ attitude toward Basic Electricity. There is a need for teachers to be knowledgeable about the PSI learning strategy before it can be implemented in the classroom and, therefore, they should regularly attend conferences, workshops and seminars, where they can learn the requisite skills and knowledge to handle this innovative teaching strategy.Nyakisiso e laeditse khuetso ya mokgwa wo o hlaotswego wa mmotlolo wa thuto wa go ruta (PSI) go phihlelelo ya baithuti ba mo go Mohlagase wa Motheo ka dikholetseng tsa setegeniki. Diteori tsa tlwaetso, tshomiso ya tshedimoso, le leano la go ithuta di dikologile nyakisiso. Nyakisiso e somisitse sehlopha sa taolo ye e sa lekanego ya teko ya pele/teko ya ka morago, le ya go se kgethe, moakanyetso wa boitekelo bja tlholo ya khuetso ka factorial matrix wa 2 x 2 x 2 woo ka gare ga wona o somago tshwaro maemong a mabedi a go kgabaganywa ka bong le lefelo la sekolo. Palo ya batho ba ba lego mo nyakisisong e na le baithuti ba ngwaga wa bobedi ka moka ba mesomo ya go amana le boentseneere ka dikholetseng ka moka tsa setegeniki ka Osun State, Nigeria. Ka go somisa thekniki ya go dira sampole ka go kgetha, dikholetse tsa setegeniki tse nne tsa go ba le n = 152 ya baithuti ba Mohlagase wa Motheo gomme barutisi ba bane ba kgathile tema ka nyakisisong. Dikolo tse pedi (se setee sa motsesetoropo gomme se setee sa motsemagae) tseo go tsona n = 57 e lego ya motsesetoropo gape le ya motsemagae n = 30, di bopile sehlopha sa boitekelo (n = 87), gomme dikolo tse dingwe tse pedi (se setee sa motsesetoropo sa go ba le = 39 le se setee sa go ba le n = 26) di bopile sehlopha sa taolo (n = 65). Mokgwa wo o hlaotswego wa tlhahlo o phethagaditswe ka dikolong tse pedi tsa boitekelo ka barutisi ba Mohlagase wa Motheo ba go fapana bao, bjalo ka bathusi ba nyakisiso, ba hlahletswego tshomiso ya maano a mokgwa wo o hlaotswego wa tlhahlo mo go ruteng Mohlagase wa Motheo. Dikolo tse pedi tsa taolo le tsona di rutilwe ke barutisi ba tsona ka go somisa mokgwa wa go ruta wa tlwaelo (CLM). Dihlopha tsa baithuti ka moka tse di kgathilego tema ka gare ga nyakisiso, ka ge go sa kgonege go kgetha ka sewelo bakgathatema ba nyakisiso. Nyakisiso e dirilwe ka dibeke tse tshela (beke ye tee ya tlhahlo le dibeke tse tlhano tsa nyakisiso ye kgolo). Haephothesese le dipotsiso tsa nyakisiso tse lesomenne di botsisitswe, di arabilwe, ebile di lekilwe ka gare ga nyakisiso. Datha ya khwalithethifi e kgobokeditswe ka go somisa diteko tsa phihlelelo tse di lekaneditswego mo go Mohlagase wa Motheo le Maikutlo a Baithuti go lenaneopotsiso la Mohlagase wa Motheo. Didiriswa tse di somisitswego di dirilwe teko pele gomme dipoelo di tsentswe ka khomphutheng ka go somisa Kuder-Richardson (K-R) fomula ya 20 le Cronbach-alpha, yeo e filego r = 0.937 ya diteko tsa phihlelelo ya Mohlagase wa Motheo le ฮฑ = 0.952 ya Maikutlo a Baithuti go mananeopotsiso a Mohlagase wa Motheo. Datha ye e kgobokeditswego go tswa nyakisisong e sekasekilwe ka go somisa palelo ya boipoeletso, phesente, tshate ya paa le palogare ya dipotsiso tsa nyakisiso le Tshekatsheko ya Kelo ya Phapano (ANCOVA) ya haephothesese ye e lekilwego maemong a 0.05 a bohlokwa. Dipoelo tsa nyakisiso ye di laeditse gore baithuti ka sehlopheng sa boitekelo ba somile bokaone kudu go feta dithaka tsa bona ka sehlopheng sa taolo ka gare ga dintlha tsa phihlelelo ya Mohlagase wa Motheo. Baithuti ba banna ba rutile Mohlagase wa Motheo ba somisa PSI gomme ba CLM ba somile bokaone go feta dithaka tsa bona tsa basadi. Baithuti ba go tswa dikolong tse di lego ka motsesetoropong ba rutile Mohlagase wa Motheo ba somisa PSI gomme ba CLM ba somile bokaone mo go dintlha tsa phihlelelo tsa palogare go feta baithuti ba go tswa dikolong tsa ka metsemagaeng. Sehlopha sa boitekelo se bile le ntlha ya maikutlo ya palogare ya godingwana go feta dithaka tsa bona tsa basadi. Baithuti ba go tswa dikolong tsa ka motsesetoropong ba rutile Mohlagase wa Motheo ba somisa PSI ba bile le ntlha ya maikutlo ya palogare ya godingwana go feta dithaka tsa bona tsa go tswa dikolong tsa motsemagae. Go ya ka dipalopalo go bile le khuetso ye kgolo ye bohlokwa ya godimo ya tshwaro (PSI) go phihlelelo ya baithuti mo go Mohlagase wa Motheo [F (1,143) = 171.937, P < .05, ฮท2 = .546]. Gape go bile le khuetso ye kgolo ye bohlokwa ya bong godimo ga phihlelelo ya baithuti ba kholetse ya setegeniki mo go Mohlagase wa Motheo [F (1,143) = 43.943, P < .05, ฮท2 = .235]. Se sengwe gape, go bile le khuetso ye kgolo ya bohlokwa ya lefelo la sekolo godimo ga phihlelelo ya baithuti ba kholetse ya setegeniki mo go Mohlagase wa Motheo [F (1,143) = 17.581, P < .05, ฮท2 = .109]. Go bile le khuetso ya kopantsho ye bohlokwa ya mokgwa wo o hlaotswego wa tlhahlo le lefelo la sekolo godimo ga dipoelo tsa thuto tsa baithuti ba kholetse ba setegeniki mo go Mohlagase wa Motheo [F (1,143) = 4.191; P = .042, ฮท2 = .028] gomme kopantsho e be e le ya tatelano, e laetsa gore khuetso ya tsenelelano e be e le maatla ka baithuti ba go ruta Mohlagase wa Motheo ba somisa PSI. Go bile le khuetso ye bohlokwa ya godimo ya mokgwa wo o hlaotswego wa tlhahlo godimo ga maikutlo a baithuti go Mohlagase wa Motheo, [F (1,143) = 11.863, P < .05, ฮท2 = .077]. Fela, go sisinywa gagolo gore barutisi ba Mohlagase wa Motheo ba somise maano a tlhahlo a PSI ka dihlopeng tsa bona tsa baithuti go kgontsha phefomentshe ya baithuti. Barutisi ba Mohlagase wa Motheo ba swanela go lekolaleswa tiriso ya tlhahlo ka phaposiborutelong bja bona go akaretsa go tloga go tiriso ya tlhahlo yeo e dirago gore baithuti e be batheeletsi ba go se tshwenye, go ya go tiriso yeo e kgathisago baithuti tema ka mafolofolo ka gare ga ditshepetso tsa ditshepetso tsa tlhahlo. Se sengwe gape, barutisi ba setegeniki ba swanela gape go tsebiswa maano a kaonafatso a go fapana ao a tlago ba thusa go hlokomela diphapano gare ga baithuti ka gare ga phaposiborutelo. Se se tla thusa baithuti go ba le maikutlo a mabotse go Mohlagase wa Motheo, ba be le boitshepho, le go itokisetsa gabotse go ya go hwetseng dipoelo tse di botse mo go Mohlagase wa Motheo. Go swanela go ba le kabo ye e lekanego ya ditlabakelo tsa motheo tsa phethagatso ye botse ya mokgwa wa PSI mo go ruteng le go ithuteng Mohlagase wa Motheo. Bjalo ka ge go laeditswe, PSI gape e ka huetsa gabotse maikutlo a baithuti go Mohlagase wa Motheo. Go na le nyakego ya gore barutisi ba amogelege mabapi le leano la go ithuta la PSI pele e ka phethagatswa ka gare ga phaposiborutelo gomme, bjalo, ba swanela go tsenela dikhonferentshe kgafetsa, diwekesopo le diseminare, fao ba kago ithuta mabokgoni bja maleba le go amogela go swaragane le leano le la thuto ya boithomelo.Science and Technology EducationPh. D. (Technology Education

    Ethical Practices in Facilitating Learning and Improving Educational Technology and Alternative Education by Using Google Classroom

    Get PDF
    The globalization period has ushered in a race among nations to develop, adopt, and master new technology. Using technology in education is one of the most effective methods to do this. Utilizing education-based technologies, such as Google Classroom, can help Philippines Woman University (PWU) overcome the barriers to the adoption of online learning. Google Classroom has a distinct look and feel, like many new programs that emerge. Google Classroom is a component of the Google Apps for Education (GAFE) online suite of productivity tools for instructors and learners using the internet. This program offers a centralized location for interacting with students, offering feedback, and assigning assignments. Google Classroom has implications for how education is implemented in Philippines Woman University (PWU), including how teachers are evaluated, how students use technology, and more

    Teaching Sciences in Virtual Worlds with Mastery Learning: A Case of Study in Elementary School

    Full text link
    Virtual worlds are 3D environments that provide a feeling of immersion and a high degree of interaction, collaboration, communication between users. Its applicability can be focused on the educational scope, in which theories can be integrated as the basis to didactic activities carried out in the 3D environment, being its area of interdisciplinary comprehension. In this context, this article presents the use of a Virtual World built to assist in the teaching of Science for students of the middle school, whose articulation of the activities performed in the course are based on the precepts of the educational theory Mastery Learning. Tests were carried out in the subject of science, being divided into two periods with different groups for comparative purposes and realized evaluations during the period of the experiments. Kruskal-Wallis and Wilcoxon-Mann-Whitney non-parametric test were applied to the results of the assessments to ascertain the performance of each group. It was verified in the general analyzis that the participants who used the Virtual World had a growing performance, with high medians and adequate distribution of the results, being predominant of a smaller variability and amplitude. Thus, was possible to conclude that the results obtained with the approach were positive, which led to the validation of this research and presented a clear contribution to the academic environment

    Towards Designing AI-Enabled Adaptive Learning Systems

    Get PDF
    Paper I, III, IV and V are not available as a part of the dissertation due to the copyright.Among the many innovations driven by artificial intelligence (AI) are more advanced learning systems known as AI-enabled adaptive learning systems (AI-ALS). AI-ALS are platforms that adapt to the learning strategies of students by modifying the order and difficulty level of learning tasks based on the abilities of students. These systems support adaptive learning, which is the personalization of learning for students in a learning system, such that the system can deal with individual differences in aptitude. AI-ALS are gaining traction due to their ability to deliver learning content and adapt to individual student needs. While the potential and importance of such systems have been well documented, the actual implementation of AI-ALS and other AI-based learning systems in real-world teaching and learning settings has not reached the effectiveness envisaged on the level of theory. Moreover, AI-ALS lack transferable insights and codification of knowledge on their design and development. The reason for this is that many previous studies were experimental. Thus, this dissertation aims to narrow the gap between experimental research and field practice by providing practical design statements that can be implemented in effective AI-ALSs.publishedVersio
    • โ€ฆ
    corecore