7,927 research outputs found

    Augmenting human memory using personal lifelogs

    Get PDF
    Memory is a key human facility to support life activities, including social interactions, life management and problem solving. Unfortunately, our memory is not perfect. Normal individuals will have occasional memory problems which can be frustrating, while those with memory impairments can often experience a greatly reduced quality of life. Augmenting memory has the potential to make normal individuals more effective, and those with significant memory problems to have a higher general quality of life. Current technologies are now making it possible to automatically capture and store daily life experiences over an extended period, potentially even over a lifetime. This type of data collection, often referred to as a personal life log (PLL), can include data such as continuously captured pictures or videos from a first person perspective, scanned copies of archival material such as books, electronic documents read or created, and emails and SMS messages sent and received, along with context data of time of capture and access and location via GPS sensors. PLLs offer the potential for memory augmentation. Existing work on PLLs has focused on the technologies of data capture and retrieval, but little work has been done to explore how these captured data and retrieval techniques can be applied to actual use by normal people in supporting their memory. In this paper, we explore the needs for augmenting human memory from normal people based on the psychology literature on mechanisms about memory problems, and discuss the possible functions that PLLs can provide to support these memory augmentation needs. Based on this, we also suggest guidelines for data for capture, retrieval needs and computer-based interface design. Finally we introduce our work-in-process prototype PLL search system in the iCLIPS project to give an example of augmenting human memory with PLLs and computer based interfaces

    Team Learning: A Theoretical Integration and Review

    Get PDF
    With the increasing emphasis on work teams as the primary architecture of organizational structure, scholars have begun to focus attention on team learning, the processes that support it, and the important outcomes that depend on it. Although the literature addressing learning in teams is broad, it is also messy and fraught with conceptual confusion. This chapter presents a theoretical integration and review. The goal is to organize theory and research on team learning, identify actionable frameworks and findings, and emphasize promising targets for future research. We emphasize three theoretical foci in our examination of team learning, treating it as multilevel (individual and team, not individual or team), dynamic (iterative and progressive; a process not an outcome), and emergent (outcomes of team learning can manifest in different ways over time). The integrative theoretical heuristic distinguishes team learning process theories, supporting emergent states, team knowledge representations, and respective influences on team performance and effectiveness. Promising directions for theory development and research are discussed

    Towards an Interaction-Centered and Dynamically Constructed Episodic Memory for Social Robots

    Get PDF
    Hassan T, Kopp S. Towards an Interaction-Centered and Dynamically Constructed Episodic Memory for Social Robots. In: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’20 Companion). New York: ACM; 2020.This paper outlines an interaction-centered and dynamically constructed episodic memory for social robots, in order to enable naturalistic, social human-robot interaction. The proposed model includes a record of multi-timescale events stored in the event history, a record of multi-timescale interval definitions stored as interaction episodes, and a set of links associating specific elements of the two records. The event history is constructed dynamically, depending on the occurrence of internal and external events. The interaction episodes are defined on the basis of robot-initiated and user-initiated interactions. The episodic memory is realised within a social human-robot interaction architecture, whose components generate events pertaining to the context and state of interaction

    Projective simulation for artificial intelligence

    Get PDF
    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes retaine

    A Biosymtic (Biosymbiotic Robotic) Approach to Human Development and Evolution. The Echo of the Universe.

    Get PDF
    In the present work we demonstrate that the current Child-Computer Interaction paradigm is not potentiating human development to its fullest – it is associated with several physical and mental health problems and appears not to be maximizing children’s cognitive performance and cognitive development. In order to potentiate children’s physical and mental health (including cognitive performance and cognitive development) we have developed a new approach to human development and evolution. This approach proposes a particular synergy between the developing human body, computing machines and natural environments. It emphasizes that children should be encouraged to interact with challenging physical environments offering multiple possibilities for sensory stimulation and increasing physical and mental stress to the organism. We created and tested a new set of computing devices in order to operationalize our approach – Biosymtic (Biosymbiotic Robotic) devices: “Albert” and “Cratus”. In two initial studies we were able to observe that the main goal of our approach is being achieved. We observed that, interaction with the Biosymtic device “Albert”, in a natural environment, managed to trigger a different neurophysiological response (increases in sustained attention levels) and tended to optimize episodic memory performance in children, compared to interaction with a sedentary screen-based computing device, in an artificially controlled environment (indoors) - thus a promising solution to promote cognitive performance/development; and that interaction with the Biosymtic device “Cratus”, in a natural environment, instilled vigorous physical activity levels in children - thus a promising solution to promote physical and mental health

    Virtual enactment effect on memory in young and aged populations: a systematic review

    Get PDF
    Background: Spatial cognition is a critical aspect of episodic memory, as it provides the scaffold for events and enables successful retrieval. Virtual enactment (sensorimotor and cognitive interaction) by means of input devices within virtual environments provides an excellent opportunity to enhance encoding and to support memory retrieval with useful traces in the brain compared to passive observation. Methods: We conducted a systematic review with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines concerning the virtual enactment effect on spatial and episodic memory in young and aged populations. We aim at giving guidelines for virtual enactment studies, especially in the context of aging, where spatial and episodic memory decline. Results: Our findings reveal a positive effect on spatial and episodic memory in the young population and promising outcomes in aging. Several cognitive factors (e.g., executive function, decision-making, and visual components) mediate memory performances. Findings should be taken into account for future interventions in aging. Conclusions: The present review sheds light on the key role of the sensorimotor and cognitive systems for memory rehabilitation by means of a more ecological tool such as virtual reality and stresses the importance of the body for cognition, endorsing the view of an embodied mind

    Attention and Social Cognition in Virtual Reality:The effect of engagement mode and character eye-gaze

    Get PDF
    Technical developments in virtual humans are manifest in modern character design. Specifically, eye gaze offers a significant aspect of such design. There is need to consider the contribution of participant control of engagement. In the current study, we manipulated participants’ engagement with an interactive virtual reality narrative called Coffee without Words. Participants sat over coffee opposite a character in a virtual café, where they waited for their bus to be repaired. We manipulated character eye-contact with the participant. For half the participants in each condition, the character made no eye-contact for the duration of the story. For the other half, the character responded to participant eye-gaze by making and holding eye contact in return. To explore how participant engagement interacted with this manipulation, half the participants in each condition were instructed to appraise their experience as an artefact (i.e., drawing attention to technical features), while the other half were introduced to the fictional character, the narrative, and the setting as though they were real. This study allowed us to explore the contributions of character features (interactivity through eye-gaze) and cognition (attention/engagement) to the participants’ perception of realism, feelings of presence, time duration, and the extent to which they engaged with the character and represented their mental states (Theory of Mind). Importantly it does so using a highly controlled yet ecologically valid virtual experience

    Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults

    Get PDF

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion
    corecore