617 research outputs found

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023

    Water Literacy in Drought-Prone Regions: Case Studies from Aurora, Colorado, USA and Cape Town, Western Cape, South Africa

    Get PDF
    Water managers around the world must reevaluate their approach to water security as challenges continue to grow. Supply-focused paradigms that aimed to capture, control, and commodify water resources are increasingly unreliable and often depend on environmentally and socially damaging practices. Of particular concern are regions experiencing climate shocks and aridification from rising global temperatures. In order to stretch limited water resources using equitable water policies, conservation programs, and alternative water sourcing, water managers must invest in a water literate citizenry. Water literacy is the culmination of water-related knowledge, attitudes, and behaviors. The benefits of a water literate citizenry abound, including increased transparency and trustworthiness around water management decisions, an uptake in water conservation and collective action, and a focus on community justice and water equity. However, the relative newness of water literacy research means our understanding of this concept, including what it entails and how its formed, is limited. Within this dissertation, I draw on theories of political ecology and planned behavior to respond to calls for an increased understanding of water literacy and its application within diverse case studies. First, I conduct a systematic literature review of water literacy and synthesize available definitions into an organizational framework. Then, I seek to apply this framework within the case studies of Cape Town, Western Cape (South Africa) and Aurora, Colorado (USA). These cities represent rapidly growing urban contexts that experience recurring drought seasonally and also experienced severe droughts within the last two decades. They also offer vast differences in geographic, sociopolitical, and economic contexts. The results of this research provides each city with a baseline understanding of community water literacy, which can be used to improve water management processes. Additionally, the results expose how lived experiences and sociopolitical structures can both help and hinder the formation of community water literacy

    Measuring the impact of COVID-19 on hospital care pathways

    Get PDF
    Care pathways in hospitals around the world reported significant disruption during the recent COVID-19 pandemic but measuring the actual impact is more problematic. Process mining can be useful for hospital management to measure the conformance of real-life care to what might be considered normal operations. In this study, we aim to demonstrate that process mining can be used to investigate process changes associated with complex disruptive events. We studied perturbations to accident and emergency (A &E) and maternity pathways in a UK public hospital during the COVID-19 pandemic. Co-incidentally the hospital had implemented a Command Centre approach for patient-flow management affording an opportunity to study both the planned improvement and the disruption due to the pandemic. Our study proposes and demonstrates a method for measuring and investigating the impact of such planned and unplanned disruptions affecting hospital care pathways. We found that during the pandemic, both A &E and maternity pathways had measurable reductions in the mean length of stay and a measurable drop in the percentage of pathways conforming to normative models. There were no distinctive patterns of monthly mean values of length of stay nor conformance throughout the phases of the installation of the hospital’s new Command Centre approach. Due to a deficit in the available A &E data, the findings for A &E pathways could not be interpreted

    Study of the Soil Water Movement in Irrigated Agriculture

    Get PDF
    In irrigated agriculture, the study of the various ways water infiltrates into the soils is necessary. In this respect, soil hydraulic properties, such as soil moisture retention curve, diffusivity, and hydraulic conductivity functions, play a crucial role, as they control the infiltration process and the soil water and solute movement. This Special Issue presents the recent developments in the various aspects of soil water movement in irrigated agriculture through a number of research topics that tackle one or more of the following challenges: irrigation systems and one-, two-, and three-dimensional soil water movement; one-, two-, and three-dimensional infiltration analysis from a disc infiltrometer; dielectric devices for monitoring soil water content and methods for assessment of soil water pressure head; soil hydraulic properties and their temporal and spatial variability under the irrigation situations; saturated–unsaturated flow model in irrigated soils; soil water redistribution and the role of hysteresis; soil water movement and drainage in irrigated agriculture; salt accumulation, soil salinization, and soil salinity assessment; effect of salts on hydraulic conductivity; and soil conditioners and mulches that change the upper soil hydraulic properties and their effect on soil water movement

    Towards the improvement of machine learning peak runoff forecasting by exploiting ground- and satellite-based precipitation data: A feature engineering approach

    Get PDF
    La predicción de picos de caudal en sistemas montañosos complejos presenta desafíos en hidrología debido a la falta de datos y las limitaciones de los modelos físicos. El aprendizaje automático (ML) ofrece una solución al permitir la integración de técnicas y productos satelitales de precipitación (SPPs). Sin embargo, se ha debatido sobre la efectividad del ML debido a su naturaleza de "caja negra" que dificulta la mejora del rendimiento y la reproducibilidad de los resultados. Para abordar estas preocupaciones, se han propuesto estrategias de ingeniería de características (FE) para incorporar conocimiento físico en los modelos de ML, mejorando la comprensión y precisión de las predicciones. Esta investigación doctoral tiene como objetivo mejorar la predicción de picos de caudal mediante la integración de conceptos hidrológicos a través de técnicas de FE y el uso de datos de precipitación in-situ y SPPs. Se exploran técnicas y estrategias de ML para mejorar la precisión en sistemas hidrológicos macro y mesoescala. Además, se propone una estrategia de FE para aprovechar la información de SPPs y superar la escasez de datos espaciales y temporales. La integración de técnicas avanzadas de ML y FE representa un avance en hidrología, especialmente para sistemas montañosos complejos con limitada o nula red de monitoreo. Los hallazgos de este estudio serán valiosos para tomadores de decisiones e hidrólogos, facilitando la mitigación de los impactos de los picos de caudal. Además, las metodologías desarrolladas se pueden adaptar a otros sistemas de macro y mesoescala, beneficiando a la comunidad científica en general.Peak runoff forecasting in complex mountain systems poses significant challenges in hydrology due to limitations in traditional physically-based models and data scarcity. However, the integration of machine learning (ML) techniques offers a promising solution by balancing computational efficiency and enabling the incorporation of satellite precipitation products (SPPs). However, debates have emerged regarding the effectiveness of ML in hydrology, as its black-box nature lacks explicit representation of hydrological processes, hindering performance improvement and result reproducibility. To address these concerns, recent studies emphasize the inclusion of FE strategies to incorporate physical knowledge into ML models, enabling a better understanding of the system and improved forecasting accuracy. This doctoral research aims to enhance the effectiveness of ML in peak runoff forecasting by integrating hydrological concepts through FE techniques, utilizing both ground-based and satellite-based precipitation data. For this, we explore ML techniques and strategies to enhance accuracy in complex macro- and mesoscale hydrological systems. Additionally, we propose a FE strategy for a proper utilization of SPP information which is crucial for overcoming spatial and temporal data scarcity. The integration of advanced ML techniques and FE represents a significant advancement in hydrology, particularly for complex mountain systems with limited or inexistent monitoring networks. The findings of this study will provide valuable insights for decision-makers and hydrologists, facilitating effective mitigation of the impacts of peak runoffs. Moreover, the developed methodologies can be adapted to other macro- and meso-scale systems, with necessary adjustments based on available data and system-specific characteristics, thus benefiting the broader scientific community.0000-0002-7683-37680000-0002-6206-075XDoctor (PhD) en Recursos HídricosCuenc

    Advances in Modelling of Rainfall Fields

    Get PDF
    Rainfall is the main input for all hydrological models, such as rainfall–runoff models and the forecasting of landslides triggered by precipitation, with its comprehension being clearly essential for effective water resource management as well. The need to improve the modeling of rainfall fields constitutes a key aspect both for efficiently realizing early warning systems and for carrying out analyses of future scenarios related to occurrences and magnitudes for all induced phenomena. The aim of this Special Issue was hence to provide a collection of innovative contributions for rainfall modeling, focusing on hydrological scales and a context of climate changes. We believe that the contribution from the latest research outcomes presented in this Special Issue can shed novel insights on the comprehension of the hydrological cycle and all the phenomena that are a direct consequence of rainfall. Moreover, all these proposed papers can clearly constitute a valid base of knowledge for improving specific key aspects of rainfall modeling, mainly concerning climate change and how it induces modifications in properties such as magnitude, frequency, duration, and the spatial extension of different types of rainfall fields. The goal should also consider providing useful tools to practitioners for quantifying important design metrics in transient hydrological contexts (quantiles of assigned frequency, hazard functions, intensity–duration–frequency curves, etc.)

    The web-based simulation and information service for multi-hazard impact chains. Design document.

    Get PDF
    The overall objective of the PARATUS project and the platform is the co-development of a web-based simulation and information service for first and second responders and other stakeholders to evaluate the impact chains of multi-hazard events with particular emphasis on cross-border and cascading impacts. This deliverable provides a first impression of the platform and its components. A central theme in the PARATUS project is the co-development of the tools with stakeholders. The central stakeholders within the four applications case studies are therefore full project partners. They will be directly involved in the development of the platform. We foresee that the PARATUS Platform will have two major blocks: an information service that provides static information (or regularly updated information) and simulation service, which is a dynamic component where stakeholders can interactively work with the tools in the platform. The PARATUS will further make sure that documentation (e.g., software accompanying documentation) is also publicly available via the project website1 and other trusted repositories. The deliverable 4.1 was submitted to the European Commission on 31/07/2023 and is waiting for approval by the Research Executive Agency. Therefore, this current version may not represent the final version of the deliverable

    Precio: Private Aggregate Measurement via Oblivious Shuffling

    Get PDF
    We introduce Precio, a new secure aggregation method for computing layered histograms and sums over secret shared data in a client-server setting. Precio is motivated by ad conversion measurement scenarios, where online advertisers and ad networks want to measure the performance of ad campaigns without requiring privacy-invasive techniques, such as third-party cookies. Precio has linear (communication) complexity in the number of data points and guarantees differentially private outputs. We formally analyze its security and privacy and present a thorough performance evaluation. The protocol supports much larger domains than Prio. It supports much more flexible aggregates than the DPF-based solution and in some settings has up to four orders of magnitude better performance
    • …
    corecore