38 research outputs found

    Data Movement Challenges and Solutions with Software Defined Networking

    Get PDF
    With the recent rise in cloud computing, applications are routinely accessing and interacting with data on remote resources. Interaction with such remote resources for the operation of media-rich applications in mobile environments is also on the rise. As a result, the performance of the underlying network infrastructure can have a significant impact on the quality of service experienced by the user. Despite receiving significant attention from both academia and industry, computer networks still face a number of challenges. Users oftentimes report and complain about poor experiences with their devices and applications, which can oftentimes be attributed to network performance when downloading or uploading application data. This dissertation investigates problems that arise with data movement across computer networks and proposes novel solutions to address these issues through software defined networking (SDN). SDN is lauded to be the paradigm of choice for next generation networks. While academia explores use cases in various contexts, industry has focused on data center and wide area networks. There is a significant range of complex and application-specific network services that can potentially benefit from SDN, but introduction and adoption of such solutions remains slow in production networks. One impeding factor is the lack of a simple yet expressive enough framework applicable to all SDN services across production network domains. Without a uniform framework, SDN developers create disjoint solutions, resulting in untenable management and maintenance overhead. The SDN-based solutions developed in this dissertation make use of a common agent-based approach. The architecture facilitates application-oriented SDN design with an abstraction composed of software agents on top of the underlying network. There are three key components modern and future networks require to deliver exceptional data transfer performance to the end user: (1) user and application mobility, (2) high throughput data transfer, and (3) efficient and scalable content distribution. Meeting these key components will not only ensure the network can provide robust and reliable end-to-end connectivity, but also that network resources will be used efficiently. First, mobility support is critical for user applications to maintain connectivity to remote, cloud-based resources. Today\u27s network users are frequently accessing such resources while on the go, transitioning from network to network with the expectation that their applications will continue to operate seamlessly. As users perform handovers between heterogeneous networks or between networks across administrative domains, the application becomes responsible for maintaining or establishing new connections to remote resources. Although application developers often account for such handovers, the result is oftentimes visible to the user through diminished quality of service (e.g. rebuffering in video streaming applications). Many intra-domain handover solutions exist for handovers in WiFi and cellular networks, such as mobile IP, but they are architecturally complex and have not been integrated to form a scalable, inter-domain solution. A scalable framework is proposed that leverages SDN features to implement both horizontal and vertical handovers for heterogeneous wireless networks within and across administrative domains. User devices can select an appropriate network using an on-board virtual SDN implementation that manages available network interfaces. An SDN-based counterpart operates in the network core and edge to handle user migrations as they transition from one edge attachment point to another. The framework was developed and deployed as an extension to the Global Environment for Network Innovations (GENI) testbed; however, the framework can be deployed on any OpenFlow enabled network. Evaluation revealed users can maintain existing application connections without breaking the sockets and requiring the application to recover. Second, high throughput data transfer is essential for user applications to acquire large remote data sets. As data sizes become increasingly large, often combined with their locations being far from the applications, the well known impact of lower Transmission Control Protocol (TCP) throughput over large delay-bandwidth product paths becomes more significant to these applications. While myriads of solutions exist to alleviate the problem, they require specialized software and/or network stacks at both the application host and the remote data server, making it hard to scale up to a large range of applications and execution environments. This results in high throughput data transfer that is available to only a select subset of network users who have access to such specialized software. An SDN based solution called Steroid OpenFlow Service (SOS) has been proposed as a network service that transparently increases the throughput of TCP-based data transfers across large networks. SOS shifts the complexity of high performance data transfer from the end user to the network; users do not need to configure anything on the client and server machines participating in the data transfer. The SOS architecture supports seamless high performance data transfer at scale for multiple users and for high bandwidth connections. Emphasis is placed on the use of SOS as a part of a larger, richer data transfer ecosystem, complementing and compounding the efforts of existing data transfer solutions. Non-TCP-based solutions, such as Aspera, can operate seamlessly alongside an SOS deployment, while those based on TCP, such as wget, curl, and GridFTP, can leverage SOS for throughput improvement beyond what a single TCP connection can provide. Through extensive evaluation in real-world environments, the SOS architecture is proven to be flexibly deployable on a variety of network architectures, from cloud-based, to production networks, to scaled up, high performance data center environments. Evaluation showed that the SOS architecture scales linearly through the addition of SOS “agents†to the SOS deployment, providing data transfer performance improvement to multiple users simultaneously. An individual data transfer enhanced by SOS was shown to have increased throughput nearly forty times the same data transfer without SOS assistance. Third, efficient and scalable video content distribution is imperative as the demand for multimedia content over the Internet increases. Current state of the art solutions consist of vast content distribution networks (CDNs) where content is oftentimes hosted in duplicate at various geographically distributed locations. Although CDNs are useful for the dissemination of static content, they do not provide a clear and scalable model for the on demand production and distribution of live, streaming content. IP multicast is a popular solution to scalable video content distribution; however, it is seldom used due to deployment and operational complexity. Inspired from the distributed design of todays CDNs and the distribution trees used by IP multicast, a SDN based framework called GENI Cinema (GC) is proposed to allow for the distribution of live video content at scale. GC allows for the efficient management and distribution of live video content at scale without the added architectural complexity and inefficiencies inherent to contemporary solutions such as IP multicast. GC has been deployed as an experimental, nation-wide live video distribution service using the GENI network, broadcasting live and prerecorded video streams from conferences for remote attendees, from the classroom for distance education, and for live sporting events. GC clients can easily and efficiently switch back and forth between video streams with improved switching latency latency over cable, satellite, and other live video providers. The real world dep loyments and evaluation of the proposed solutions show how SDN can be used as a novel way to solve current data transfer problems across computer networks. In addition, this dissertation is expected to provide guidance for designing, deploying, and debugging SDN-based applications across a variety of network topologies

    Architectural approaches to a science network software-defined exchange

    Get PDF
    To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated circuits between research facilities for transferring large amounts of data, by using advanced reservation systems. Intercontinental dedicated circuits typically require coordination between multiple administrative domains, which need to reach an agreement on a suitable advance reservation. To enhance provisioning capabilities of multi-domain advance reservations, we propose an architecture for end-to-end service orchestration in multi-domain science networks that leverages software-defined networking (SDN) and software-defined exchanges (SDX) for providing multi-path, multi-domain advance reservations. Our simulations show our orchestration architecture increases the reservation success rate. We evaluate our solution using GridFTP, one of the most popular tools for data transfers in the scientific community. Additionally, we propose an interface that domain scientists can use to request science network services from our orchestration framework. Furthermore, we propose a federated auditing framework (FAS) that allows an SDX to verify whether the configurations requested by a user are correctly enforced by participating SDN domains, whether the configurations requested are correctly removed after their expiration time, and whether configurations exist that are performing non-requested actions. We also propose an architecture for advance reservation access control using SDN and tokens.Ph.D

    STCP: A New Transport Protocol for High-Speed Networks

    Get PDF
    Transmission Control Protocol (TCP) is the dominant transport protocol today and likely to be adopted in future high‐speed and optical networks. A number of literature works have been done to modify or tune the Additive Increase Multiplicative Decrease (AIMD) principle in TCP to enhance the network performance. In this work, to efficiently take advantage of the available high bandwidth from the high‐speed and optical infrastructures, we propose a Stratified TCP (STCP) employing parallel virtual transmission layers in high‐speed networks. In this technique, the AIMD principle of TCP is modified to make more aggressive and efficient probing of the available link bandwidth, which in turn increases the performance. Simulation results show that STCP offers a considerable improvement in performance when compared with other TCP variants such as the conventional TCP protocol and Layered TCP (LTCP)

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    Data availability in challenging networking environments in presence of failures

    Get PDF
    This Doctoral thesis presents research on improving data availability in challenging networking environments where failures frequently occur. The thesis discusses the data retrieval and transfer mechanisms in challenging networks such as the Grid and the delay-tolerant networking (DTN). The Grid concept has gained adaptation as a solution to high-performance computing challenges that are faced in international research collaborations. Challenging networking is a novel research area in communications. The first part of the thesis introduces the challenges of data availability in environment where resources are scarce. The focus is especially on the challenges faced in the Grid and in the challenging networking scenarios. A literature overview is given to explain the most important research findings and the state of the standardization work in the field. The experimental part of the thesis consists of eight scientific publications and explains how they contribute to research in the field. Focus in on explaining how data transfer mechanisms have been improved from the application and networking layer points of views. Experimental methods for the Grid scenarios comprise of running a newly developed storage application on the existing research infrastructure. A network simulator is extended for the experimentation with challenging networking mechanisms in a network formed by mobile users. The simulator enables to investigate network behavior with a large number of nodes, and with conditions that are difficult to re-instantiate. As a result, recommendations are given for data retrieval and transfer design for the Grid and mobile networks. These recommendations can guide both system architects and application developers in their work. In the case of the Grid research, the results give first indications on the applicability of the erasure correcting codes for data storage and retrieval with the existing Grid data storage tools. In the case of the challenging networks, the results show how an application-aware communication approach can be used to improve data retrieval and communications. Recommendations are presented to enable efficient transfer and management of data items that are large compared to available resources

    XSEDE: eXtreme Science and Engineering Discovery Environment Third Quarter 2012 Report

    Get PDF
    The Extreme Science and Engineering Discovery Environment (XSEDE) is the most advanced, powerful, and robust collection of integrated digital resources and services in the world. It is an integrated cyberinfrastructure ecosystem with singular interfaces for allocations, support, and other key services that researchers can use to interactively share computing resources, data, and expertise.This a report of project activities and highlights from the third quarter of 2012.National Science Foundation, OCI-105357

    An appraisal of secure, wireless grid-enabled data warehousing

    Get PDF
    In most research, appropriate collections of data play a significant role in aiding decision-making processes. This is more critical if the data is being accessed across organisational barriers. Further, for the data to be mined and analysed efficiently, to aid decision-making processes, it must be harnessed in a suitably-structured fashion. There is, for example, a need to perform diverse data analyses and interpretation of structured (non-personal) HIV/AIDS patient-data from various quarters in South Africa. Although this data does exist, to some extent, it is autonomously owned and stored in disparate data storages, and not readily available to all interested parties. In order to put this data to meaningful use, it is imperative to integrate and store this data in a manner in which it can be better utilized by all those involved in the ontological field. This implies integration of (and hence, interoperability), and appropriate accessibility to, the information systems of the autonomous organizations providing data and data-processing. This is a typical problem-scenario for a Virtual Inter-Organisational Information System (VIOIS), proposed in this study. The VIOIS envisaged is a hypothetical, secure, Wireless Grid-enabled Data Warehouse (WGDW) that enables IOIS interaction, such as the storage and processing of HIV/AIDS patient-data to be utilized for HIV/AIDS-specific research. The proposed WDGW offers a methodical approach for arriving at such a collaborative (HIV/AIDS research) integrated system. The proposed WDGW is virtual community that consists mainly of data-providers, service-providers and information-consumers. The WGDW-basis resulted from systematic literaturesurvey that covered a variety of technologies and standards that support datastorage, data-management, computation and connectivity between virtual community members in Grid computing contexts. A Grid computing paradigm is proposed for data-storage, data management and computation in the WGDW. Informational or analytical processing will be enabled through data warehousing while connectivity will be attained wirelessly (for addressing the paucity of connectivity infrastructure in rural parts of developing countries, like South Africa)
    corecore