253 research outputs found

    Enhancing quantum entropy in vacuum-based quantum random number generator

    Full text link
    Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator. At the same time, it directly determine the extraction ratio of true randomness from the raw data, in other words, it affects quantum random numbers generating rate obviously. In this work, considering the effects of classical noise, the best way to enhance quantum entropy in the vacuum-based quantum random number generator is explored in the optimum dynamical analog-digital converter (ADC) range scenario. The influence of classical noise excursion, which may be intrinsic to a system or deliberately induced by an eavesdropper, on the quantum entropy is derived. We propose enhancing local oscillator intensity rather than electrical gain for noise-independent amplification of quadrature fluctuation of vacuum state. Abundant quantum entropy is extractable from the raw data even when classical noise excursion is large. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the local oscillator power when classical noise excursions of the raw data is obvious.Comment: 12 pages,8 figure

    Multiplexed Quantum Random Number Generation

    Get PDF
    Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.Comment: 10 pages, 3 figures and 1 tabl

    Continuous Variable Optimisation of Quantum Randomness and Probabilistic Linear Amplification

    Get PDF
    In the past decade, quantum communication protocols based on continuous variables (CV) has seen considerable development in both theoretical and experimental aspects. Nonetheless, challenges remain in both the practical security and the operating range for CV systems, before such systems may be used extensively. In this thesis, we present the optimisation of experimental parameters for secure randomness generation and propose a non-deterministic approach to enhance amplification of CV quantum state. The first part of this thesis examines the security of quantum devices: in particular, we investigate quantum random number generators (QRNG) and quantum key distribution (QKD) schemes. In a realistic scenario, the output of a quantum random number generator is inevitably tainted by classical technical noise, which potentially compromises the security of such a device. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information independent randomness. We present a method for maximising such randomness contained in a number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mbit/s)/MHz. Next, we study the one-sided device-independent (1sDI) quantum key distribution scheme in the context of continuous variables. By exploiting recently proven entropic uncertainty relations, one may bound the information leaked to an eavesdropper. We use such a bound to further derive the secret key rate, that depends only upon the conditional Shannon entropies accessible to Alice and Bob, the two honest communicating parties. We identify and experimentally demonstrate such a protocol, using only coherent states as the resource. We measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 3.5 km of fibre transmission. The second part of this thesis concerns the improvement in the transmission of a quantum state. We study two approximate implementations of a probabilistic noiseless linear amplifier (NLA): a physical implementation that truncates the working space of the NLA or a measurement-based implementation that realises the truncation by a bounded postselection filter. We do this by conducting a full analysis on the measurement-based NLA (MB-NLA), making explicit the relationship between its various operating parameters, such as amplification gain and the cut-off of operating domain. We compare it with its physical counterpart in terms of the Husimi Q-distribution and their probability of success. We took our investigations further by combining a probabilistic NLA with an ideal deterministic linear amplifier (DLA). In particular, we show that when NLA gain is strictly lesser than the DLA gain, this combination can be realised by integrating an MB-NLA in an optical DLA setup. This results in a hybrid device which we refer to as the heralded hybrid quantum amplifier. A quantum cloning machine based on this hybrid amplifier is constructed through an amplify-then-split method. We perform probabilistic cloning of arbitrary coherent states, and demonstrate the production of up to five clones, with the fidelity of each clone clearly exceeding the corresponding no-cloning limit

    Coherence-based quantum random number generator

    Get PDF
    Theoretical design and experimental demonstration of a random number generator based on the random interference of optical signalsWe consider the random change of the phase of a laser as the physical source of randomness that allows the implementation a new type of quantum random number generator (QRNG) . We analyze the phase noise model of a laser and study how randomness can be extracted with the help of optical coherent detection. We also demonstrate an ultra-fast QRNG of up to 19 Gbits/s of random numbers that use commercial devices already found in the laboratory

    Improvements on Device Independent and Semi-Device Independent Protocols of Randomness Expansion

    Get PDF
    To generate genuine random numbers, random number generators based on quantum theory are essential. However, ensuring that the process used to produce randomness meets desired security standards can pose challenges for traditional quantum random number generators. This thesis delves into Device Independent (DI) and Semi-Device Independent (semi-DI) protocols of randomness expansion, based on a minimal set of experimentally verifiable security assumptions. The security in DI protocols relies on the violation of Bell inequalities, which certify the quantum behavior of devices. The semi-DI protocols discussed in this thesis require the characterization of only one device - a power meter. These protocols exploit the fact that quantum states can be prepared such that they cannot be distinguished with certainty, thereby creating a randomness resource. In this study, we introduce enhanced DI and semi-DI protocols that surpass existing ones in terms of output randomness rate, security, or in some instances, both. Our analysis employs the Entropy Accumulation Theorem (EAT) to determine the extractable randomness for finite rounds. A notable contribution is the introduction of randomness expansion protocols that recycle input randomness, significantly enhancing finite round randomness rates for DI protocols based on the CHSH inequality violation. In the final section of the thesis, we delve into Generalized Probability Theories (GPTs), with a focus on Boxworld, the largest GPT capable of producing correlations consistent with relativity. A tractable criterion for identifying a Boxworld channel is presented
    corecore