1,503 research outputs found

    Enhancing Decision Tree based Interpretation of Deep Neural Networks through L1-Orthogonal Regularization

    Full text link
    One obstacle that so far prevents the introduction of machine learning models primarily in critical areas is the lack of explainability. In this work, a practicable approach of gaining explainability of deep artificial neural networks (NN) using an interpretable surrogate model based on decision trees is presented. Simply fitting a decision tree to a trained NN usually leads to unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal regularization during training, however, preserves the accuracy of the NN, while it can be closely approximated by small decision trees. Tests with different data sets confirm that L1-orthogonal regularization yields models of lower complexity and at the same time higher fidelity compared to other regularizers.Comment: 8 pages, 18th IEEE International Conference on Machine Learning and Applications (ICMLA) 201

    Attention Visualizer Package: Revealing Word Importance for Deeper Insight into Encoder-Only Transformer Models

    Full text link
    This report introduces the Attention Visualizer package, which is crafted to visually illustrate the significance of individual words in encoder-only transformer-based models. In contrast to other methods that center on tokens and self-attention scores, our approach will examine the words and their impact on the final embedding representation. Libraries like this play a crucial role in enhancing the interpretability and explainability of neural networks. They offer the opportunity to illuminate their internal mechanisms, providing a better understanding of how they operate and can be enhanced. You can access the code and review examples on the following GitHub repository: https://github.com/AlaFalaki/AttentionVisualizer.Comment: 12 pages, 15 figure

    Algorithm Auditing: Managing the Legal, Ethical, and Technological Risks of Artificial Intelligence, Machine Learning, and Associated Algorithms

    Get PDF
    Algorithms are becoming ubiquitous. However, companies are increasingly alarmed about their algorithms causing major financial or reputational damage. A new industry is envisaged: auditing and assurance of algorithms with the remit to validate artificial intelligence, machine learning, and associated algorithms

    A attention way in Explainable methods for infant brain

    Full text link
    Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed.Comment: Some parts of the thesis are still being revise

    Asymmetric Co-Training with Explainable Cell Graph Ensembling for Histopathological Image Classification

    Full text link
    Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification

    Explainability of Vision Transformers: A Comprehensive Review and New Perspectives

    Full text link
    Transformers have had a significant impact on natural language processing and have recently demonstrated their potential in computer vision. They have shown promising results over convolution neural networks in fundamental computer vision tasks. However, the scientific community has not fully grasped the inner workings of vision transformers, nor the basis for their decision-making, which underscores the importance of explainability methods. Understanding how these models arrive at their decisions not only improves their performance but also builds trust in AI systems. This study explores different explainability methods proposed for visual transformers and presents a taxonomy for organizing them according to their motivations, structures, and application scenarios. In addition, it provides a comprehensive review of evaluation criteria that can be used for comparing explanation results, as well as explainability tools and frameworks. Finally, the paper highlights essential but unexplored aspects that can enhance the explainability of visual transformers, and promising research directions are suggested for future investment.Comment: 20 pages,5 figure
    • …
    corecore