814 research outputs found

    A Security Analysis of IoT Encryption: Side-channel Cube Attack on Simeck32/64

    Get PDF
    Simeck, a lightweight block cipher has been proposed to be one of the encryption that can be employed in the Internet of Things (IoT) applications. Therefore, this paper presents the security of the Simeck32/64 block cipher against side-channel cube attack. We exhibit our attack against Simeck32/64 using the Hamming weight leakage assumption to extract linearly independent equations in key bits. We have been able to find 32 linearly independent equations in 32 key variables by only considering the second bit from the LSB of the Hamming weight leakage of the internal state on the fourth round of the cipher. This enables our attack to improve previous attacks on Simeck32/64 within side-channel attack model with better time and data complexity of 2^35 and 2^11.29 respectively.Comment: 12 pages, 6 figures, 4 tables, International Journal of Computer Networks & Communication

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Error Function Attack of chaos synchronization based encryption schemes

    Full text link
    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the Error Function Attack is presented systematically and used to evaluate system security. We define a quantitative measure (Quality Factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from Quality Factor

    Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission

    Get PDF
    This study focuses on enhancing the security of the SM4 encryption algorithm for power metering data transmission by employing hybrid algorithms to optimize its substitution box (S-box). A multi-objective fitness function is constructed to evaluate the S-box structure, aiming to identify design solutions that satisfy differential probability, linear probability, and non-linearity balance. To achieve global optimization and local search for the S-box, a hybrid algorithm model that combines genetic algorithm and simulated annealing is introduced. This approach yields significant improvements in optimization effects and increased non-linearity. Experimental results demonstrate that the optimized S-box significantly reduces differential probability and linear probability while increasing non-linearity to 112. Furthermore, a comparison of the ciphertext entropy demonstrates enhanced encryption security with the optimized S-box. This research provides an effective method for improving the performance of the SM4 encryption algorithm
    corecore