102,770 research outputs found

    OptBPPlanner: Automatic Generation of Optimized Business Process Enactment Plans

    Get PDF
    Unlike imperative models, the specifi cation of business process (BP) properties in a declarative way allows the user to specify what has to be done instead of having to specify how it has to be done, thereby facilitating the human work involved, avoiding failures, and obtaining a better optimization. Frequently, there are several enactment plans related to a specifi c declarative model, each one presenting specifi c values for different objective functions, e.g., overall completion time. As a major contribution of this work, we propose a method for the automatic generation of optimized BP enactment plans from declarative specifi cations. The proposed method is based on a constraint-based approach for planning and scheduling the BP activities. These optimized plans can then be used for different purposes like simulation, time prediction, recommendations, and generation of optimized BP models. Moreover, a tool-supported method, called OptBPPlanner, has been implemented to demonstrate the feasibility of our approach. Furthermore, the proposed method is validated through a range of test models of varying complexity.Ministerio de Ciencia e Innovación TIN2009-1371

    A virtual environment for the design and simulated construction of prefabricated buildings

    Get PDF
    The construction industry has acknowledged that its current working practices are in need of substantial improvements in quality and efficiency and has identified that computer modelling techniques and the use of prefabricated components can help reduce times, costs, and minimise defects and problems of on-site construction. This paper describes a virtual environment to support the design and construction processes of buildings from prefabricated components and the simulation of their construction sequence according to a project schedule. The design environment can import a library of 3-D models of prefabricated modules that can be used to interactively design a building. Using Microsoft Project, the construction schedule of the designed building can be altered, with this information feeding back to the construction simulation environment. Within this environment the order of construction can be visualised using virtual machines. Novel aspects of the system are that it provides a single 3-D environment where the user can construct their design with minimal user interaction through automatic constraint recognition and view the real-time simulation of the construction process within the environment. This takes this area of research a step forward from other systems that only allow the planner to view the construction at certain stages, and do not provide an animated view of the construction process

    NMUS: Structural Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric CSPs

    Get PDF
    Models are used in science and engineering for experimentation, analysis, model-based diagnosis, design and planning/sheduling applications. Many of these models are overconstrained Numeric Constraint Satisfaction Problems (NCSP), where the numeric constraints could have linear or polynomial relations. In practical scenarios, it is very useful to know which parts of the overconstrained NCSP instances cause the unsolvability. Although there are algorithms to find all optimal solutions for this problem, they are computationally expensive, and hence may not be applicable to large and real-world problems. Our objective is to improve the performance of these algorithms for numeric domains using structural analysis. We provide experimental results showing that the use of the different strategies proposed leads to a substantially improved performance and it facilitates the application of solving larger and more realistic problems.Ministerio de Educación y Ciencia DIP2006-15476-C02-0

    Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach

    Get PDF
    Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems
    corecore