994 research outputs found

    Enhancing BERT for Lexical Normalization

    Get PDF
    International audienceLanguage model-based pre-trained representations have become ubiquitous in natural language processing. They have been shown to significantly improve the performance of neu-ral models on a great variety of tasks. However , it remains unclear how useful those general models can be in handling non-canonical text. In this article, focusing on User Generated Content (UGC) in a resource-scarce scenario , we study the ability of BERT (Devlin et al., 2018) to perform lexical normalisation. Our contribution is simple: by framing lexical normalisation as a token prediction task, by enhancing its architecture and by carefully fine-tuning it, we show that BERT can be a competitive lexical normalisation model without the need of any UGC resources aside from 3,000 training sentences. To the best of our knowledge , it is the first work done in adapting and analysing the ability of this model to handle noisy UGC data

    Lexical Normalization for Code-switched Data and its Effect on POS Tagging

    Get PDF
    Lexical normalization, the translation of non-canonical data to standard language, has shown to improve the performance of manynatural language processing tasks on social media. Yet, using multiple languages in one utterance, also called code-switching (CS), is frequently overlooked by these normalization systems, despite its common use in social media. In this paper, we propose three normalization models specifically designed to handle code-switched data which we evaluate for two language pairs: Indonesian-English (Id-En) and Turkish-German (Tr-De). For the latter, we introduce novel normalization layers and their corresponding language ID and POS tags for the dataset, and evaluate the downstream effect of normalization on POS tagging. Results show that our CS-tailored normalization models outperform Id-En state of the art and Tr-De monolingual models, and lead to 5.4% relative performance increase for POS tagging as compared to unnormalized input

    MultiLexNorm: A Shared Task on Multilingual Lexical Normalization

    Get PDF
    Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MULTILEXNORM shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 12 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system

    MultiLexNorm: A Shared Task on Multilingual Lexical Normalization

    Get PDF
    Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system

    On Separate Normalization in Self-supervised Transformers

    Full text link
    Self-supervised training methods for transformers have demonstrated remarkable performance across various domains. Previous transformer-based models, such as masked autoencoders (MAE), typically utilize a single normalization layer for both the [CLS] symbol and the tokens. We propose in this paper a simple modification that employs separate normalization layers for the tokens and the [CLS] symbol to better capture their distinct characteristics and enhance downstream task performance. Our method aims to alleviate the potential negative effects of using the same normalization statistics for both token types, which may not be optimally aligned with their individual roles. We empirically show that by utilizing a separate normalization layer, the [CLS] embeddings can better encode the global contextual information and are distributed more uniformly in its anisotropic space. When replacing the conventional normalization layer with the two separate layers, we observe an average 2.7% performance improvement over the image, natural language, and graph domains.Comment: NIPS 202
    corecore