381 research outputs found

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Congestion Control for Vehicular Environments by Adjusting IEEE 802.11 Contention Window Size

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-03889-6_30Medium access control protocols should manage the highly dynamic nature of Vehicular Ad Hoc Networks (VANETs) and the variety of application requirements. Therefore, achieving a well-designed MAC protocol in VANETs is a challenging issue. The contention window is a critical element for handling medium access collisions in IEEE 802.11, and it highly affects the communications performance. This paper proposes a new contention window control scheme, called DBM-ACW, for VANET environments. Analysis and simulation results using OMNeT++ in urban scenarios show that DBM-ACW provides better overall performance compared with previous proposals, even with high network densities.This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543-C03-01Balador, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2013). Congestion Control for Vehicular Environments by Adjusting IEEE 802.11 Contention Window Size. En Algorithms and Architectures for Parallel Processing. Springer. 259-266. https://doi.org/10.1007/978-3-319-03889-6_30S259266Booysen, M.J., Zeadally, S., van Rooyen, G.-J.: Survey of media access control protocols for vehicular ad hoc networks. IET Communications 5(11), 1619–1631 (2011)Kenney, J.: Standards and regulations. In: Hartenstein, H., Laberteaux, K.P. (eds.) VANET: Vehicular Applications and Inter-networking Technologies, ch. 10, pp. 365–428. Wiley (2010)Stanica, R., Chaput, E., Beylot, A.-L.: Enhancements of IEEE 802.11p Protocol for Access Control on a VANET Control Channel. In: 2011 IEEE International Conference on Communications (ICC), June 5-9, pp. 1–5 (2011)Calafate, C.T., Fortino, G., Fritsch, S., Monteiro, J., Cano, J., Manzoni, P.: An efficient and robust content delivery solution for IEEE 802.11p vehicular environments. Journal of Network and Computer Applications 35(2), 753–762 (2012)Cali, F., Conti, M., Gregori, E.: Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking 8(6), 785–799 (2000)Wu, H., Cheng, S., Peng, Y., Long, K., Ma, J.: IEEE 802.11 distributed coordination function (DCF): analysis and enhancement. In: IEEE International Conference on Communications, ICC 2002, vol. 1, pp. 605–609 (2002)Balador, A., Movaghar, A., Jabbehdari, S.: History based contention window control in ieee 802.11 mac protocol in error prone channel. Journal of Computer Science 6(2), 205–209 (2010)Chrysostomou, C., Djouvas, C., Lambrinos, L.: Applying adaptive QoS-aware medium access control in priority-based vehicular ad hoc networks. In: 2011 IEEE Symposium on Computers and Communications (ISCC), June 28-July 1, pp. 741–747 (2011)Jang, H.-C., Feng, W.-C.: Network Status Detection-Based Dynamic Adaptation of Contention Window in IEEE 802.11p. In: 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), May 16-19, pp. 1–5 (2010)http://www.omnetpp.org/http://inet.omnetpp.org/Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - Simulation of Urban MObility: An Overview. In: The Third International Conference on Advances in System Simulation, SIMUL 2011 (2011)Baguena, M., Tornell, S., Torres, A., Calafate, C.T., Cano, J.C., Manzoni, P.: VACaMobil: VANET Car Mobility Manager for OMNeT++. In: IEEE International Conference on Communications 2013 - 3rd IEEE International Workshop on Smart Communication Protocols and Algorithms (SCPA 2013), Budapest, Hungary (June 2013)Baguena, M., Calafate, C.T., Cano, J., Manzoni, P.: Towards realistic vehicular network simulation models. In: 2012 IFIP Wireless Days (WD), November 21-23, pp. 1–3 (2012)http://www.openstreetmap.org

    Software-Defined Network-Based Vehicular Networks: A Position Paper on Their Modeling and Implementation

    Full text link
    There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks' challenges handled by SDN-based vehicular networks.Comment: 14 pages, 3 figures, Sensors 201

    Design and Evaluation of Efficient Medium Access Control Solutions for Vehicular Environments

    Full text link
    [EN] In recent years, advances in wireless technologies and improved sensing and computational capabilities have led to a gradual transition towards Intelligent Transportation Systems (ITS) and related applications. These applications aim at improving road safety, provide smart navigation, and eco-friendly driving. Vehicular Ad hoc Networks (VANETs) provide a communication structure for ITS by equipping cars with advanced sensors and communication devices that enable a direct exchange of information between vehicles. Different types of ITS applications rely on two types of messages: periodic beacons and event-driven messages. Beacons include information such as geographical location, speed, and acceleration, and they are only disseminated to a close neighborhood. Differently from beacons, event-driven messages are only generated when a critical event of general interest occurs, and it is spread within a specific target area for the duration of the event. The reliability of information exchange is one of the main issues for vehicularcommunications since the safety of people on the road is directly related to the effectiveness of these transmissions. A Medium Access Control (MAC) protocol must guarantee reliable beacon broadcasting within deadline bounds to all vehicles in the neighbourhood, thereby providing them timely notifications about unsafe driving conditions or other hazardous events. Moreover, infotainment and comfort applications require reliable unicast transmissions that must be taken into account. However, high node mobility, highly dynamic topology, and lack of a central control unit, are issues that make the design of a reliable MAC protocol for vehicular environments a very difficult and challenging task, especially when efficient broadcasting strategies are required. The IEEE 802.11p MAC protocol, an approved amendment to the IEEE 802.11 standard, is a random access protocol that is unable to provide guaranteed delay bounds with sufficient reliability in vehicular scenarios, especially under high channel usage. This problem is particularly serious when implementing (semi-) automated driving applications such as platooning, where inter-vehicle spacing is drastically reduced, and the control loop that manages and maintains the platoon requires frequent, timely and reliable exchange of status information (beacons). In this thesis novel protocols compatible with the IEEE 802.11 and 802.11p standards are proposed in order to optimally adjust the contention window size for unicast applications in Mobile Ad hoc Networks (MANETs) and VANETs. Experimental tests comparing our proposals to existing solutions show that the former are able to improve the packet delivery ratio and the average end-to-end delay for unicast applications. Concerning efficient message diffusion (broadcast) in VANET environments, we proposed token-based MAC solutions to improve the performance achieved by existing 802.11p driving safety applications in different vehicular environments, including highway, urban, and platooning scenarios. Experimental results show that the proposed solutions clearly outperform 802.11p when delay-bounded beacons and event notifications must be delivered.[ES] Recientemente, los avances en las tecnologías inalámbricas y las mejoras en términos de capacidades de sensorización y computación de los dispositivos electrónicos, han dado lugar a una transición gradual hacia servicios y aplicaciones de los Sistemas Inteligentes de Transporte (ITS). Estas aplicaciones tienen como objetivo mejorar la seguridad vial, proporcionar una navegación inteligente, y promover la conducción eco-eficiente. Las redes vehiculares ad hoc (VANETs) proporcionan una infraestructura de comunicaciones para ITS al equipar los coches con sensores avanzados y dispositivos de comunicación que permiten el intercambio directo de información entre vehículos. Los diferentes tipos de aplicaciones ITS se basan en dos tipos de mensajes: mensajes periódicos conocidos como beacons y mensajes asociados a eventos. Los mensajes periódicos incluyen información relativa a la ubicación geográfica, la velocidad y la aceleración, entre otros, y sólo son distribuidos entre los vehículos vecinos. A diferencia de estos beacons, los mensajes asociados a eventos sólo se generan cuando se produce un evento crítico de interés general, el cual se propaga dentro del área de interés de dicho evento y mientras éste siga activo. La fiabilidad del intercambio de información es uno de los principales problemas para las comunicaciones vehiculares, debido principalmente a que las aplicaciones de seguridad dependen directamente de la eficacia de estas transmisiones. Un protocolo de Control de Acceso al Medio (MAC) debe garantizar la difusión fiable de información a todos los vehículos vecinos dentro de unos límites máximos de retardo, proporcionándoles las notificaciones oportunas respecto a condiciones de conducción inseguras y otros eventos peligrosos. Por otra parte, las aplicaciones de información y entretenimiento, así como las aplicaciones orientadas al confort, también requieren transmisiones fiables extremoa-extremo. Sin embargo, la alta movilidad de los vehículos, la variabilidad de la topología, así como la falta de una unidad central de control, son factores que hacen que el diseño de un protocolo MAC fiable para entornos vehiculares sea una tarea especialmente compleja, especialmente cuando son necesarias estrategias de difusión eficientes. El protocolo MAC IEEE 802.11p, una modificación ya aprobada al estándar IEEE 802.11 original para entornos de comunicación vehiculares, es un protocolo de acceso que no es capaz de garantizar unos límites de retardo con la fiabilidad necesaria para estos entornos, especialmente en escenarios de alta utilización del canal inalámbrico. Este problema es particularmente importante a la hora de implementar aplicaciones de conducción (semi-)automática, como el caso de grupos de vehículos donde la separación entre vehículos se reduce drásticamente, y el sistema de control que gestiona y mantiene el grupo requiere de un intercambio frecuente de información fiable y acotado en retardo. En esta tesis se proponen nuevos protocolos MAC compatibles con los estándares IEEE 802.11 y 802.11p basados en el ajuste del tamaño de la ventana de contención para aplicaciones unicast en rede MANETs y VANETs. Los resultados experimentales obtenidos comparando nuestras propuestas con las soluciones existentes muestran que los protocolos propuestos son capaces de mejorar la tasa de entrega de paquetes y el retardo medio extremo-a-extremo para aplicaciones unicast. En lo que respecta a la difusión eficiente de mensajes broadcast en entornos VANET, se han propuesto soluciones MAC basadas en el uso de tokens que mejoran las prestaciones de aplicaciones de conducción segura basadas en el estándar 802.11p, tanto en autopistas, zonas urbanas, y escenarios con grupos de vehículos. Los resultados experimentales muestran que las soluciones propuestas superan claramente al protocolo 802.11p cuando es necesario entregar mensajes y notificaciones de eventos con restricc[CA] Recentment, els avan en les tecnologies sense fils i les millores en termes de capacitats de sensorització i computació dels dispositius electrònics, han donat lloc a una transició gradual cap a serveis i aplicacions dels sistemes intelligents de transport (ITS). Aquestes aplicacions tenen com a objectiu millorar la seguretat vial, proporcionar una navegació intelligent, i promoure la conducció ecoeficient. Les xarxes vehiculars ad hoc (VANET) proporcionen una infraestructura de comunicacions per a ITS, ja que equipen els cotxes amb sensors avançats i dispositius de comunicació que permeten l'intercanvi directe d'informació entre vehicles. Els diversos tipus d'aplicacions ITS es basen en dos classes de missatges: missatges periòdics coneguts com a beacons i missatges associats a esdeveniments. Els missatges periòdics inclouen informació relativa a la ubicació geogràfica, la velocitat i l'acceleració, entre uns altres, i només són distribuïts entre els vehicles veïns. A diferència d'aquests beacons, els missatges associats a esdeveniments només es generen quan es produeix un esdeveniment crític d'interès general, el qual es propaga dins de l àrea d'interès d'aquest esdeveniment i mentre aquest seguisca actiu. La fiabilitat de l'intercanvi d'informació és un dels principals problemes per a les comunicacions vehicular, principalment perquè les aplicacions de seguretat depenen directament de l'eficàcia d'aquestes transmissions. Un protocol de control d'accés al medi (MAC) ha de garantir la difusió fiable d'informació a tots els vehicles veïns dins d'uns límits màxims de retard, i proporcionar-los les notificacions oportunes respecte a condicions de conducció insegures i altres esdeveniments perillosos. D'altra banda, les aplicacions d'informació i entreteniment, com també les aplicacions orientades al confort, també requereixen transmissions fiables extrema-extrem. No obstant això, l'alta mobilitat dels vehicles, la variabilitat de la topologia, i la falta d'una unitat central de control, són factors que fan que el disseny d'un protocol MAC fiable per a entorns vehiculars siga una tasca especialment complexa, especialment quan són necessàries estratègies de difusió eficients. El protocol MAC IEEE 802.11p, una modificació ja aprovada a l'estàndard IEEE 802.11 original per a entorns de comunicació vehiculars, és un protocol d'accés que no és capa garantir uns límits de retard amb la fiabilitat necessària per a aquests entorns, especialment en escenaris d'alta utilització del canal sense fil. Aquest problema és particularment important a l'hora d'implementar aplicacions de conducció (semi)automàtica, com el cas de grups de vehicles en què la separació entre vehicles es redueix dràsticament, i el sistema de control que gestiona i manté el grup requereix un intercanvi freqüent d'informació fiable i delimitat en retard. En aquesta tesi es proposen nous protocols MAC compatibles amb els estàndards IEEE 802.11 i 802.11p basats en l'ajust de les dimensions de la finestra de contenció per a aplicacions unicast en xarxes MANET i VANET. Els resultats experimentals obtinguts comparant les nostres propostes amb les solucions existents mostren que els protocols proposats són capa de millorar la taxa de lliurament de paquets i el retard mitjà extrem-a-extrem per a aplicacions unicast. Pel que fa a la difusió eficient de missatges broadcast en entorns VANET, s'han proposat solucions MAC basades en l'ús de tokens que milloren les prestacions d'aplicacions de conducció segura basades en l'estàndard 802.11p, tant en autopistes, zones urbanes, i escenaris amb grups de vehicles. Els resultats experimentals mostren que les solucions proposades superen clarament el protocol 802.11p quan cal lliurar missatges i notificacions d'esdeveniments amb restriccions de latència.Balador, A. (2016). Design and Evaluation of Efficient Medium Access Control Solutions for Vehicular Environments [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64073TESI

    Evaluating the Impact of Transmission Range on the Performance of VANET

    Get PDF
    Recently, interest in the field of Vehicular Ad-hoc Networks (VANETs) has grown among research community to improve traffic safety and efficiency on the roads. Despite the many advantages, the transmission range in vehicular network remains one of the major challenges due to the unique characteristics of VANETs such as various communication environments, highly dynamic topology, high node mobility and traffic density. The network would suffer from a broadcast-storm in high vehicular density when a fixed transmission range in VANET is used, while in sparse vehicular density the network could be disconnected frequently. In this paper, we evaluated the impact of different transmission ranges and number of flows formed between vehicles in a highway scenario using AODV as routing protocol. In order to validate the simulation of VANET, traffic and network simulators (SUMO & NS-2) have been used. The performance was evaluated in terms of packet delivery ratio and end-to-end delay. The simulation results have shown that better performance was achieved in term of higher PDR and lower end-to-end delay for less than 500 meters transmission range. On the contrary, the PDR started to decrease and end-to-end delay increased when the transmission range exceeded 500 meters. The performance degraded as the number of flows increased

    Approximation of the IEEE 802.11p standard using commercial off-the-shelf IEEE 802.11a hardware

    Get PDF
    IEEE 802.11p hardware is hard to find. Previous research efforts often relied on project-specific prototype implementations which are characterized by a high cost and are not always available to the entire research community. Commercially available turnkey implementations are rare and quite expensive compared to commercial of-the-shelf (COTS) IEEE 802.11a/b/g hardware. However, the difference between the IEEE 802.11p amendment and the other IEEE 802.11 standards is quite small. It can be seen as a combination of the IEEE 802.11a and IEEE 802.11e standards, with some specific adjustments. This paper presents how an approximation of the IEEE 802.11p standard can be implemented using COTS IEEE 802.11a hardware and some specific software adjustments. This way, vehicular test infrastructures can be established in a much more cost effective manner, and existing IEEE 802.11 wireless testbeds can be used to support VANET research

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    Models and Performance of VANET based Emergency Braking

    Get PDF
    The network research community is working in the field of automotive to provide VANET based safety applications to reduce the number of accidents, deaths, injuries and loss of money. Several approaches are proposed and investigated in VANET literature, but in a completely network-oriented fashion. Most of them do not take into account application requirements and no one considers the dynamics of the vehicles. Moreover, message repropagation schemes are widely proposed without investigating their benefits and using very complicated approaches. This technical report, which is derived from the Master Thesis of Michele Segata, focuses on the Emergency Electronic Brake Lights (EEBL) safety application, meant to send warning messages in the case of an emergency brake, in particular performing a joint analysis of network requirements and provided application level benefits. The EEBL application is integrated within a Collaborative Adaptive Cruise Control (CACC) which uses network-provided information to automatically brake the car if the driver does not react to the warning. Moreover, an information aggregation scheme is proposed to analyze the benefits of repropagation together with the consequent increase of network load. This protocol is compared to a protocol without repropagation and to a rebroadcast protocol found in the literature (namely the weighted p-persistent rebroadcast). The scenario is a highway stretch in which a platoon of vehicles brake down to a complete stop. Simulations are performed using the NS_3 network simulation in which two mobility models have been embedded. The first one, which is called Intelligent Driver Model (IDM) emulates the behavior of a driver trying to reach a desired speed and braking when approaching vehicles in front. The second one (Minimizing Overall Braking Induced by Lane change (MOBIL)), instead, decides when a vehicle has to change lane in order to perform an overtake or optimize its path. The original simulator has been modified by - introducing real physical limits to naturally reproduce real crashes; - implementing a CACC; - implementing the driver reaction when a warning is received; - implementing different network protocols. The tests are performed in different situations, such as different number of lanes (one to five), different average speeds, different network protocols and different market penetration rates and they show that: - the adoption of this technology considerably decreases car accidents since the overall average maximum deceleration is reduced; - network load depends on application-level details, such as the implementation of the CACC; - VANET safety application can improve safety even with a partial market penetration rate; - message repropagation is important to reduce the risk of accidents when not all vehicles are equipped; - benefits are gained not only by equipped vehicles but also by unequipped ones
    corecore