101 research outputs found

    FlexStream: SDN-Based Framework for Programmable and Flexible Adaptive Video Streaming

    Get PDF
    With the tremendous increase in video traffic fueled by smartphones, tablets, 4G LTE networks, and other mobile devices and technologies, providing satisfactory services to end users in terms of playback quality and a fair share of network resources become challenging. As a result, an HTTP video streaming protocol was invented and widely adopted by most video providers today with the goal of maximizing the user’s quality of experience. However, despite the intensive efforts of major video providers such as YouTube and Netflix to improve their players, several studies as well as our measurements indicate that the players still suffer from several performance issues including instability and sub-optimality in the video bitrate, stalls in the playback, unfairness in sharing the available bandwidth, and inefficiency with regard to network utilization, considerably degrading the user’s QoE. These issues are frequently experienced when several players start competing over a common bottleneck. Interestingly, the root cause of these issues is the intermittent traffic pattern of the HTTP adaptive protocol that causes the players to over-estimate the available bandwidth and stream unsustainable video bitrates. In addition, the wireless network standards today do not allow the network to have a fine-grain control over individual devices which is necessary for providing resource usage coordination and global policy enforcement. We show that enabling such a network-side control would drive each device to fairly and efficiently utilize the network resources based on its current context, which would result in maximizing the overall viewing experience in the network and optimizing the bandwidth utilization. In this dissertation, we propose FlexStream, a flexible and programmable Software-Defined Network (SDN) based framework that solves all the adaptive streaming problems mentioned above. We develop FlexStream on top of the SDN-based framework that extends SDN functionality to mobile end devices, allowing for a fine-grained control and management of bandwidth based on real time context-awareness and specified policy. We demonstrate that FlexStream can be used to manage video delivery for a set of end devices over WiFi and cellular links and can effectively alleviate common problems such as player instability, playback stalls, large startup delay, and inappropriate bandwidth allocation. FlexStream offloads several tasks such as monitoring and policy enforcement to end-devices, while a network element (i.e., Global Controller), which has a global view of a network condition, is primarily employed to manage the resource allocation. This also alleviates the need for intrusive, large and costly traffic management solutions within the network, or modifications to servers that are not feasible in practice. We define an optimization method within the global controller for resource allocation to maximize video QoE considering context information, such as screen size and user priority. All features of FlexStream are implemented and validated on real mobile devices over real Wi-Fi and cellular networks. To the best of our knowledge, FlexStream is the first implementation of SDN-based control in a live cellular network that does not require any internal network support for SDN functionality

    New cross-domain QoE guarantee method based on isomorphism flow

    Get PDF
    This paper investigates the issue of Quality of Experience(QoE)for multimedia services over heterogeneous networks. Anew concept of “Isomor-phism Flow”(iFlow) was introduced for analyzing multimedia traffics, which is inspired by the abstract algebrabased on experimental research. By using iF-low, the multimedia traffics with similar QoErequirements for differentusersare aggregated. AQoE evaluation method was also proposed for the aggregated traffics. Then a new cross-domain QoE guarantee method based on the iFlow QoEis proposed in this paper to adjust the network resource fromthe perspec-tive of user perception.The proposed scheme is validated through simulations. Simulationresults show that the proposed scheme achieves an enhancement in QoE performanceandoutperforms the existing schemes

    Employing H.264 Coarse and Medium Grain Scalable Video to Optimize Video Playback over Passive Optical Networks

    Get PDF
    In this work, we propose the use of Coarse Grain Scalable (CGS) and Medium Grain Scalable (MGS) H.264/AVC video to optimize video playback on passive optical networks (PONs) by investigating network performance metrics such as data delay, video delay, and video delay jitter. Video playback is improved by sequentially dropping layers of scalable video. Dropping just a single CGS enhancement layer results in improvements of up to 57% for both data and video delay. However, video delay jitter benefits the most with an improvement ranging from 47% to 87%. Surprisingly, dropping subsequent CGS enhancement layers does not significantly improve the PONs performance. In order to remedy this effect, our focus switched to employing the H.264/AVC MGS video standard. Though video traffic delay is the primary object of optimization in this work, the proposed algorithm’s impacts on other network performance metrics such as data traffic delay and video traffic delay variance (jitter) are analyzed as well. Video playback is improved by employing an adaptive scalable video layer dropping algorithm which drops a progressively larger number of scalable video layers as network utilization increases as measured by the moving average of the video packet delay. The influence of the algorithm\u27s three parameters on its performance is investigated in detail, and the results of the optimized adaptive dropping algorithm are compared to baseline static dropping algorithm

    5G Wireless Communication Network Architecture and Its Key Enabling Technologies

    Get PDF
    The wireless mobile communication systems have developed from the second generation (2G) through to the current fourth generation (4G) wireless system, transforming from simply telephony system to a network transporting rich multimedia contents including video conferencing, 3-D gaming and in-flight broadband connectivity (IFBC) where airline crew use augmented reality headsets to address passengers personally. However, there are still many challenges that are beyond the capabilities of the 4G as the demand for higher data rate, lower latency, and mobility requirement by new wireless applications sores leading to mixed contentcentric communication service. The fifth generation (5G) wireless system has thus been suggested, and research is ongoing for its deployment beyond 2020. In this article, we investigate the various challenges of 4G and propose an indoor, outdoor segregated cellular architecture with cloudbased Radio Access Network (C-RAN) for 5G, we review some of its key emerging wireless technologies needed in meeting the new demands of users including massive multiple input multiple output (mMIMO) system, Device-to-Device (D2D), Visible Light Communication (VLC), Ultra-dense network, Spatial Modulation and Millimeter wave technology. It is also shown how the benefits of the emerging technologies can be optimized using the Software Defined Networks/Network Functions Virtualization (SDN/NFV) as a tool in C-RAN. We conclude that the new 5G wireless architecture will derive its strength from leveraging on the benefits of the emerging hardware technologies been managed by reconfigurable SDN/NFV via the C-RAN. This work will be of immense help to those who will engage in further research expedition and network operators in the search for a smooth evolution of the current state of the art networks toward 5G networks

    An SDN QoE Monitoring Framework for VoIP and video applications

    Get PDF
    Τα τελευταία χρόνια έχει σημειωθεί ραγδαία άνοδος του κλάδου των κινητών επικοινωνιών, αφού η χρήση των κινητών συσκευών εξαπλώνεται με ταχύτατους ρυθμούς και αναμένεται να συνεχίσει τη διείσδυσή της στην καθημερινότητα των καταναλωτών. Το γεγονός αυτό, σε συνδυασμό με τους περιορισμούς που θέτει η τρέχουσα δομή των δικτύων επικοινωνιών, καθιστά αναγκαία την ανάπτυξη νέων δικτύων με αυξημένες δυνατότητες, ώστε να είναι δυνατή η εξυπηρέτηση των χρηστών με την καλύτερη δυνατή ποιότητα εμπειρίας και ταυτόχρονα τη βέλτιστη αξιοποίηση των πόρων του δικτύου. Μία νέα δικτυακή προσέγγιση αποτελεί η δικτύωση βασισμένη στο λογισμικό (Software Defined Networking - SDN), η οποία αφαιρεί τον έλεγχο από τις συσκευές προώθησης του δικτύου, και οι αποφάσεις λαμβάνονται σε κεντρικό σημείο. Η ποιότητα υπηρεσίας που αντιλαμβάνεται ο χρήστης, ή αλλιώς ποιότητα εμπειρίας, κρίνεται ζήτημα υψηλής σημασίας στα δίκτυα SDN. Η παρούσα διπλωματική εργασία έχει ως στόχο την παρουσίαση της τεχνολογίας SDN, την επισκόπηση της υπάρχουσας έρευνας στο πεδίο της ποιότητας εμπειρίας σε SDN δίκτυα και στη συνέχεια την ανάπτυξη μίας SDN εφαρμογής η οποία παρακολουθεί και διατηρεί την ποιότητας εμπειρίας σε υψηλά επίπεδα για εφαρμογές VoIP και video. Πιο συγκεκριμένα, η εφαρμογή SQMF (SDN QoE Monitoring Framework) παρακολουθεί περιοδικά στο μονοπάτι μετάδοσης των πακέτων διάφορες παραμέτρους του δικτύου, με βάση τις οποίες υπολογίζει την ποιότητα εμπειρίας. Εάν διαπιστωθεί ότι το αποτέλεσμα είναι μικρότερο από ένα προσδιορισμένο κατώφλι, η εφαρμογή αλλάζει το μονοπάτι μετάδοσης, και έτσι η ποιότητα εμπειρίας ανακάμπτει. Η δομή της παρούσας διπλωματικής εργασίας είναι η εξής: Στο κεφάλαιο 1 παρουσιάζεται η σημερινή εικόνα των δικτύων επικοινωνιών και οι προβλέψεις για τη μελλοντική εικόνα, καθώς και οι προκλήσεις στις οποίες τα σημερινά δίκτυα δε θα μπορούν να αντεπεξέλθουν. Στη συνέχεια στο κεφάλαιο 2 περιγράφεται αναλυτικά η τεχνολογία SDN ως προς την αρχιτεκτονική, το κύριο πρωτόκολλο που χρησιμοποιεί, τα σενάρια χρήσης της, την προτυποποίηση, τα πλεονεκτήματα και τα μειονεκτήματά της. Το κεφάλαιο 3 εισάγει την έννοια της ποιότητας εμπειρίας του χρήστη και παραθέτει ευρέως γνωστά μοντέλα υπολογισμού της για διάφορους τύπους εφαρμογών, που χρησιμοποιούνται στην παρούσα εργασία. Σχετικές υπάρχουσες μελέτες στο πεδίο της ποιότητας εμπειρίας σε δίκτυα SDN αλλά και συγκριτικός πίνακας μπορούν να βρεθούν στο κεφάλαιο 4. Τα επόμενα κεφάλαια αφορούν στην εφαρμογή SQMF που υλοποιήθηκε στα πλαίσια της παρούσας διπλωματικής εργασίας: το κεφάλαιο 5 περιγράφει αναλυτικά όλα τα προαπαιτούμενα εργαλεία και οδηγίες για την ανάπτυξη του SQMF, ενώ το κεφάλαιο 6 παρουσιάζει παραδείγματα όπου η ποιότητα εμπειρίας ενός δικτύου μπορεί να υποστεί μείωση. Τέλος, το κεφάλαιο 7 αναλύει σε βάθος τις σχεδιαστικές προδιαγραφές, τη λογική και τον κώδικα του SQMF και παρέχει επίδειξη της λειτουργίας του και αξιολόγησή του, ενώ το κεφάλαιο 8 συνοψίζει επιγραμματικά τα συμπεράσματα της παρούσας εργασίας και ανοιχτά θέματα για μελλοντική έρευνα.Lately, there has been a rapid rise of the mobile communications industry, since the use of mobile devices is spreading at a fast pace and is expected to continue its penetration into the daily routine of consumers. This fact, combined with the limitations of the current communications networks’ structure, necessitates the development of new networks with increased capabilities, so that users can be served with the best possible quality of service and at the same time with the optimal network resources utilization. A new networking approach is Software Defined Networking (SDN) which decouples the control from the data plane, transforming the network elements to simple forwarding devices and making decisions centrally. The quality of service perceived by the user, or quality of experience (QoE), is considered to be a matter of great importance in software defined networks. This diploma thesis aims at presenting SDN technology, reviewing existing research in the field of QoE on SDN networks and then developing an SDN application that monitors and preserves the QoE for VoIP and video applications. More specifically, the developed SDN QoE Monitoring Framework (SQMF) periodically monitors various network parameters on the VoIP/video packets transmission path, based on which it calculates the QoE. If it is found that the result is less than a predefined threshold, the framework changes the transmission path, and thus the QoE recovers. The structure of this diploma thesis is the following: Chapter 1 presents the current state of communications networks and predictions for the future state, as well as the challenges that current networks will not be able to cope with. Chapter 2 then describes in detail the SDN technology in terms of architecture, main control-data plane communication protocol, use cases, standardization, advantages and disadvantages. Chapter 3 introduces the concept of QoE and lists well-known QoE estimation models for various applications types, some of which were used in this thesis. Relevant existing studies in the field of QoE on SDN networks as well as a comparative table can be found in chapter 4. The following chapters concern the framework implemented in the context of this diploma thesis: Chapter 5 describes in detail all the required tools and instructions for the development of SQMF, while Chapter 6 presents examples where the QoE in a network can face degradation. Finally, Chapter 7 analyzes in depth SQMF's design principles, logic and code files, provides a demonstration of its operation and evaluates it, whereas Chapter 8 briefly summarizes the conclusions and of this thesis and future work points

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Service oriented networking for multimedia applications in broadband wireless networks

    Get PDF
    Extensive efforts have been focused on deploying broadband wireless networks. Providing mobile users with high speed network connectivity will let them run various multimedia applications on their wireless devices. In order to successfully deploy and operate broadband wireless networks, it is crucial to design efficient methods for supporting various services and applications in broadband wireless networks. Moreover, the existing access-oriented networking solutions are not able to fully address all the issues of supporting various applications with different quality of service requirements. Thus, service-oriented networking has been recently proposed and has gained much attention. This dissertation discusses the challenges and possible solutions for supporting multimedia applications in broadband wireless networks. The service requirements of different multimedia applications such as video streaming and Voice over IP (VoIP) are studied and some novel service-oriented networking solutions for supporting these applications in broadband wireless networks are proposed. The performance of these solutions is examined in WiMAX networks which are the promising technology for broadband wireless access in the near future. WiMAX networks are based on the IEEE 802.16 standards which have defined different Quality of Service (QoS) classes to support a broad range of applications with varying service requirements to mobile and stationary users. The growth of multimedia traffic that requires special quality of service from the network will impose new constraints on network designers who should wisely allocate the limited resources to users based on their required quality of service. An efficient resource management and network design depends upon gaining accurate information about the traffic profile of user applications. In this dissertation, the access level traffic profile of VoIP applications are studied first, and then a realistic distribution model for VoIP traffic is proposed. Based on this model, an algorithm to allocate resources for VoIP applications in WiMAX networks is investigated. Later, the challenges and possible solutions for transmitting MPEG video streams in wireless networks are discussed. The MPEG traffic model adopted by the WiMAX Forum is introduced and different application-oriented solutions for enhancing the performance of wireless networks with respect to MPEG video streaming applications are explained. An analytical framework to verify the performance of the proposed solutions is discoursed, and it is shown that the proposed solutions will improve the efficiency of VoIP applications and the quality of streaming applications over wireless networks. Finally, conclusions are drawn and future works are discussed

    Improving Quality of Experience and Protocol Performance Using User Context Information

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Resource Management Techniques in Cloud-Fog for IoT and Mobile Crowdsensing Environments

    Get PDF
    The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks

    Quality-driven resource utilization methods for video streaming in wireless communication networks

    Get PDF
    This research is focused on the optimisation of resource utilisation in wireless mobile networks with the consideration of the users’ experienced quality of video streaming services. The study specifically considers the new generation of mobile communication networks, i.e. 4G-LTE, as the main research context. The background study provides an overview of the main properties of the relevant technologies investigated. These include video streaming protocols and networks, video service quality assessment methods, the infrastructure and related functionalities of LTE, and resource allocation algorithms in mobile communication systems. A mathematical model based on an objective and no-reference quality assessment metric for video streaming, namely Pause Intensity, is developed in this work for the evaluation of the continuity of streaming services. The analytical model is verified by extensive simulation and subjective testing on the joint impairment effects of the pause duration and pause frequency. Various types of the video contents and different levels of the impairments have been used in the process of validation tests. It has been shown that Pause Intensity is closely correlated with the subjective quality measurement in terms of the Mean Opinion Score and this correlation property is content independent. Based on the Pause Intensity metric, an optimised resource allocation approach is proposed for the given user requirements, communication system specifications and network performances. This approach concerns both system efficiency and fairness when establishing appropriate resource allocation algorithms, together with the consideration of the correlation between the required and allocated data rates per user. Pause Intensity plays a key role here, representing the required level of Quality of Experience (QoE) to ensure the best balance between system efficiency and fairness. The 3GPP Long Term Evolution (LTE) system is used as the main application environment where the proposed research framework is examined and the results are compared with existing scheduling methods on the achievable fairness, efficiency and correlation. Adaptive video streaming technologies are also investigated and combined with our initiatives on determining the distribution of QoE performance across the network. The resulting scheduling process is controlled through the prioritization of users by considering their perceived quality for the services received. Meanwhile, a trade-off between fairness and efficiency is maintained through an online adjustment of the scheduler’s parameters. Furthermore, Pause Intensity is applied to act as a regulator to realise the rate adaptation function during the end user’s playback of the adaptive streaming service. The adaptive rates under various channel conditions and the shape of the QoE distribution amongst the users for different scheduling policies have been demonstrated in the context of LTE. Finally, the work for interworking between mobile communication system at the macro-cell level and the different deployments of WiFi technologies throughout the macro-cell is presented. A QoEdriven approach is proposed to analyse the offloading mechanism of the user’s data (e.g. video traffic) while the new rate distribution algorithm reshapes the network capacity across the macrocell. The scheduling policy derived is used to regulate the performance of the resource allocation across the fair-efficient spectrum. The associated offloading mechanism can properly control the number of the users within the coverages of the macro-cell base station and each of the WiFi access points involved. The performance of the non-seamless and user-controlled mobile traffic offloading (through the mobile WiFi devices) has been evaluated and compared with that of the standard operator-controlled WiFi hotspots
    corecore