43 research outputs found

    EQUALISATION TECHNIQUES FOR MULTI-LEVEL DIGITAL MAGNETIC RECORDING

    Get PDF
    A large amount of research has been put into areas of signal processing, medium design, head and servo-mechanism design and coding for conventional longitudinal as well as perpendicular magnetic recording. This work presents some further investigation in the signal processing and coding aspects of longitudinal and perpendicular digital magnetic recording. The work presented in this thesis is based upon numerical analysis using various simulation methods. The environment used for implementation of simulation models is C/C + + programming. Important results based upon bit error rate calculations have been documented in this thesis. This work presents the new designed Asymmetric Decoder (AD) which is modified to take into account the jitter noise and shows that it has better performance than classical BCJR decoders with the use of Error Correction Codes (ECC). In this work, a new method of designing Generalised Partial Response (GPR) target and its equaliser has been discussed and implemented which is based on maximising the ratio of the minimum squared euclidean distance of the PR target to the noise penalty introduced by the Partial Response (PR) filter. The results show that the new designed GPR targets have consistently better performance in comparison to various GPR targets previously published. Two methods of equalisation including the industry's standard PR, and a novel Soft-Feedback- Equalisation (SFE) have been discussed which are complimentary to each other. The work on SFE, which is a novelty of this work, was derived from the problem of Inter Symbol Interference (ISI) and noise colouration in PR equalisation. This work also shows that multi-level SFE with MAP/BCJR feedback based magnetic recording with ECC has similar performance when compared to high density binary PR based magnetic recording with ECC, thus documenting the benefits of multi-level magnetic recording. It has been shown that 4-level PR based magnetic recording with ECC at half the density of binary PR based magnetic recording has similar performance and higher packing density by a factor of 2. A novel technique of combining SFE and PR equalisation to achieve best ISI cancellation in a iterative fashion has been discussed. A consistent gain of 0.5 dB and more is achieved when this technique is investigated with application of Maximum Transition Run (MTR) codes. As the length of the PR target in PR equalisation increases, the gain achieved using this novel technique consistently increases and reaches up to 1.2 dB in case of EEPR4 target for a bit error rate of 10-5

    Forward Error Correction for High Capacity Transmission Systems

    Get PDF
    Αυτή η μελέτη διερευνά την αλληλεπίδραση μεταξύ FEC διόρθωσης σφαλμάτων προώθησης και ψηφιακού αντιστάθμιση μη γραμμικότητας DBP σε ένα κανάλι ινών μεγάλων αποστάσεων. Πρώτον, α Η προσέγγιση που βασίζεται στην έρευνα χρησιμοποιείται για τον προσδιορισμό των τεχνολογιών αιχμής στο FEC για το κανάλι ινών και προσαρμόστε τα στο τελικό σχέδιο. Οι σχεδιαστικές επιλογές περιλαμβάνουν το χρήση τετριμμένων bit κωδικοποιημένης διαμόρφωσης αρχιτεκτονικής T-BICM με συνενωμένη σχήμα κώδικα που χρησιμοποιεί έναν επαναληπτικό soft αποκωδικοποιητή. Η απαίτηση για συνενωμένη Η εφαρμογή FEC οδήγησε σε μια άλλη έρευνα για έναν κώδικα καλής απόδοσης συνδυασμός. Το ακανόνιστο LDPC και το οιονεί κυκλικό QC-LDPC, που υιοθετήθηκαν από το DVB-S2 και Τα πρότυπα IEEE 802.11, αντίστοιχα, συνδυάστηκαν με τον κώδικα σκάλας και σύγκριση με βάση τις επιτευχθείσες επιδόσεις. Αποδεικνύουμε ότι αυξάνοντας τις ίνες απόσταση μετάδοσης κατά 1/3, από 300km έως 400km, διατηρώντας παράλληλα την η ίδια απόδοση και η χρήση των ίδιων γενικών εξόδων, δηλαδή 27,5% είναι εφικτό όταν υλοποίηση του DBP με 2 βήματα/περιοχή ή 3 βήματα/περιοχή, ανάλογα με το αν το Οι επαναλήψεις αποκωδικοποίησης είναι 10 ή 5. Αυτή η μελέτη καταλήγει με την εύνοια του LDPC από το DVB-S2 πάνω από το QC-LDPC του IEEE 802.11 για κανάλι ινών μεγάλων αποστάσεων. Το συμπέρασμα βγαίνει με βάση σχετικά με την καλύτερη απόδοση για το LDPC-DVB, λόγω των μεγάλων μηκών κωδικών του και του υποστήριξη για υψηλούς ρυθμούς κωδικοποίησης με αποτέλεσμα χαμηλές γενικές απαιτήσειςThis study investigates the interplay between forward error correction FEC and digital back-propagation DBP nonlinearity compensation on a long-haul fibre channel. First, a research-based approach is used to identify the state-of-the-art technologies in FEC for the fibre channel and adapt them to the final design. The design choices includes the usage of trivial bit interleaved coded modulation T-BICM architecture with a concatenated code scheme that uses an iterative soft decoder. The requirement for a concatenated FEC implementation motivated another investigation of a well-performing code combination. The Irregular LDPC and quasi-cyclic QC-LDPC, adopted from DVB-S2 and IEEE 802.11 standards, respectively, were each concatenated with staircase code and compared based on the attained performance. We prove that increasing the fibre transmission distance by a factor of 1/3, from 300km to 400km, while maintaining the same performance and using the same overhead, i.e. 27.5\% is achievable when implementing DBP with 2 steps/span or 3 steps/span, depending on whether the decoding iterations are 10 or 5. This study concludes with favouring LDPC from DVB-S2 over IEEE 802.11's QC-LDPC for long haul fibre channel. The conclusion is made based on the better attained performance for LDPC-DVB, due to its long code lengths, and its support for high coding rates resulting low overhead requirement

    CONVERGENCE IMPROVEMENT OF ITERATIVE DECODERS

    Get PDF
    Iterative decoding techniques shaked the waters of the error correction and communications field in general. Their amazing compromise between complexity and performance offered much more freedom in code design and made highly complex codes, that were being considered undecodable until recently, part of almost any communication system. Nevertheless, iterative decoding is a sub-optimum decoding method and as such, it has attracted huge research interest. But the iterative decoder still hides many of its secrets, as it has not been possible yet to fully describe its behaviour and its cost function. This work presents the convergence problem of iterative decoding from various angles and explores methods for reducing any sub-optimalities on its operation. The decoding algorithms for both LDPC and turbo codes were investigated and aspects that contribute to convergence problems were identified. A new algorithm was proposed, capable of providing considerable coding gain in any iterative scheme. Moreover, it was shown that for some codes the proposed algorithm is sufficient to eliminate any sub-optimality and perform maximum likelihood decoding. Its performance and efficiency was compared to that of other convergence improvement schemes. Various conditions that can be considered critical to the outcome of the iterative decoder were also investigated and the decoding algorithm of LDPC codes was followed analytically to verify the experimental results

    IST-2000-30148 I-METRA: D3.1 Design, analysis and selection of suitable algorithms

    Get PDF
    This deliverable contains a description of the space-time coding algorithms to be simulated within the I-METRA project. Different families of algorithms have been selected and described in this document with the objective of evaluating their performance. One of the main objectives of the I-METRA project is to impact into the current standardisation efforts related to the introduction of Multiple Input Multiple Output (MIMO) configurations into the High Speed Downlink and Uplink Packet Access concepts of UMTS (HSDPA and HSUPA). This required a review of the current specifications for these systems and the analysis of the impact of the potential incorporation of the selected MIMO schemes.Preprin

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    Multiple Parallel Concatenated Gallager Codes and Their Applications

    Get PDF
    Due to the increasing demand of high data rate of modern wireless communications, there is a significant interest in error control coding. It now plays a significant role in digital communication systems in order to overcome the weaknesses in communication channels. This thesis presents a comprehensive investigation of a class of error control codes known as Multiple Parallel Concatenated Gallager Codes (MPCGCs) obtained by the parallel concatenation of well-designed LDPC codes. MPCGCs are constructed by breaking a long and high complexity of conventional single LDPC code into three or four smaller and lower complexity LDPC codes. This design of MPCGCs is simplified as the option of selecting the component codes completely at random based on a single parameter of Mean Column Weight (MCW). MPCGCs offer flexibility and scope for improving coding performance in theoretical and practical implementation. The performance of MPCGCs is explored by evaluating these codes for both AWGN and flat Rayleigh fading channels and investigating the puncturing of these codes by a proposed novel and efficient puncturing methods for improving the coding performance. Another investigating in the deployment of MPCGCs by enhancing the performance of WiMAX system. The bit error performances are compared and the results confirm that the proposed MPCGCs-WiMAX based IEEE 802.16 standard physical layer system provides better gain compared to the single conventional LDPC-WiMAX system. The incorporation of Quasi-Cyclic QC-LDPC codes in the MPCGC structure (called QC-MPCGC) is shown to improve the overall BER performance of MPCGCs with reduced overall decoding complexity and improved flexibility by using Layered belief propagation decoding instead of the sum-product algorithm (SPA). A proposed MIMO-MPCGC structure with both a 2X2 MIMO and 2X4 MIMO configurations is developed in this thesis and shown to improve the BER performance over fading channels over the conventional LDPC structure

    Channel Coding in Molecular Communication

    Get PDF
    This dissertation establishes and analyzes a complete molecular transmission system from a communication engineering perspective. Its focus is on diffusion-based molecular communication in an unbounded three-dimensional fluid medium. As a basis for the investigation of transmission algorithms, an equivalent discrete-time channel model (EDTCM) is developed and the characterization of the channel is described by an analytical derivation, a random walk based simulation, a trained artificial neural network (ANN), and a proof of concept testbed setup. The investigated transmission algorithms cover modulation schemes at the transmitter side, as well as channel equalizers and detectors at the receiver side. In addition to the evaluation of state-of-the-art techniques and the introduction of orthogonal frequency-division multiplexing (OFDM), the novel variable concentration shift keying (VCSK) modulation adapted to the diffusion-based transmission channel, the lowcomplex adaptive threshold detector (ATD) working without explicit channel knowledge, the low-complex soft-output piecewise linear detector (PLD), and the optimal a posteriori probability (APP) detector are of particular importance and treated. To improve the error-prone information transmission, block codes, convolutional codes, line codes, spreading codes and spatial codes are investigated. The analysis is carried out under various approaches of normalization and gains or losses compared to the uncoded transmission are highlighted. In addition to state-of-the-art forward error correction (FEC) codes, novel line codes adapted to the error statistics of the diffusion-based channel are proposed. Moreover, the turbo principle is introduced into the field of molecular communication, where extrinsic information is exchanged iteratively between detector and decoder. By means of an extrinsic information transfer (EXIT) chart analysis, the potential of the iterative processing is shown and the communication channel capacity is computed, which represents the theoretical performance limit for the system under investigation. In addition, the construction of an irregular convolutional code (IRCC) using the EXIT chart is presented and its performance capability is demonstrated. For the evaluation of all considered transmission algorithms the bit error rate (BER) performance is chosen. The BER is determined by means of Monte Carlo simulations and for some algorithms by theoretical derivation

    Reconfiguration of field programmable logic in embedded systems

    Get PDF

    Optimisation de la transmission de phonie et vidéophonie sur les réseaux à larges bandes PMR

    Get PDF
    Cet exposé analyse les perspectives large bande des réseaux PMR, à travers l'évaluation du candidat LTE, et la proposition d'une possible évolution du codage canal, la solution brevetée des codes turbo à protection non uniforme. Une première étude dans le chapitre 2 se concentre sur l'analyse multi-couche et l'identification des problèmes clé des communications de voix et de vidéo sur un réseau LTE professionnel. Les capacités voix et vidéo sont estimées pour les liens montant et descendant de la transmission LTE, et l'efficacité spectrale de la voix en lien descendant est comparée à celle de PMR et GSM. Ce chapitre souligne certains points clé de l'évolution de LTE. S'ils étaient pas résolus par la suite, LTE se verrait perdre de sa crédibilité en tant que candidat à l'évolution de la PMR. Une telle caractéristique clé des réseaux PMR est le codage canal à protection non uniforme, qui pourrait être adapté au système LTE pour une évolution aux contraintes de la sécurité publique. Le chapitre 3 introduit cette proposition d'évolution, qui a été brevetée: les turbo codes à protection non uniforme intégrée. Nous proposons une nouvelle approche pour le codage canal à protection non uniforme à travers les codes turbo progressives hiérarchiques. Les configurations parallèles et séries sont analysées. Les mécanismes de protection non uniformes sont intégrés dans la structure de l'encodeur même à travers l'insertion progressif et hiérarchique de nouvelles données de l'utilisateur. Le turbo décodage est modifié pour exploiter de façon optimale l'insertion progressive de données dans le processus d'encodage et estimer hiérarchiquement ces données. Les propriétés des structures parallèles et séries sont analysées à l'aide d'une analogie aux codes pilotes, ainsi qu'en regardant de plus près leurs caractéristiques de poids de codage. Le taux de transmission virtuel et les représentations des graphs factor fournissent une meilleure compréhension de ces propriétés. Les gains de codage sont évalués à l'aide de simulations numériques, en supposant des canaux de transmission radio statiques et dynamiques, et en utilisant des codes de référence. Enfin, dans le chapitre 4, l'idée breveté du code turbo parallal progressif et hiérarchique (PPHTC) est évaluée sur la plateforme LTE. Une description détaillée de l'architecture des bearers de LTE est donnée, et ses conséquences sont discutées. Le nouveau codage canal est inséré et évalué sur cette plateforme, et ses performances sont comparées avec des schémas de transmission typique à LTE. L'analyse de la qualité de la voix aide à conclure sur l'efficacité de la solution proposée dans un système de transmission réel. Pourtant, même si cette dernière donne les meilleurs résultats, d'avantage d'optimisations devraient être envisagées pour obtenir des gains améliorés et mieux exploiter le potentiel du codage proposé. L'exposé se conclut dans le chapitre 5 et une courte discussion présente les futures perspectives de rechercheThis dissertation analyzes the PMR broadband perspectives, through the evaluation of the preferred candidate, LTE, and the proposal of a possible channel coding evolution, the patented solution of unequal error protection embedded turbo codes. A first study in chapter 2 focuses on the multi-layer analysis and the identification of key issues for professional-like LTE for voice and video communications. The voice and video capacities are estimated for both downlink and uplink LTE transmissions, and the downlink LTE voice system efficiency is compared with that of the PMR and Global System for Mobile Communications (GSM). This chapter helps highlighting some of the key points. If not resolved, the latter could lead to the LTE downfall as a candidate for the PMR evolution. One such key characteristic of PMR systems is the unequal error protection channel coding technique, which might be adapted to the LTE technology for its evolution to public safety requirements. Chapter 3 further introduces the proposed evolution patented ideas: the unequal error protection embedded turbo codes. We propose a new approach for the unequal error protection channel coding through the progressive hierarchical turbo codes. Both parallel and serial turbo configurations are closely studied. The unequal error protection mechanisms are embedded in the encoder s structure itself through the progressive and hierarchical insertion of new data. The turbo decoding is modified as to optimally exploit the progressive insertion of information in the encoding process and hierarchically estimate the corresponding data. Both parallel and serial configurations properties are analyzed using an analogy with a pilot code behavior, as well as a zoom on the weight error functions coefficients. The virtual code rate and factor graph interpretations also provide a better insight on the code properties. The code possible gains are highlighted through computer simulations in both static and dynamic transmission environments, by using carefully chosen benchmarks. Finally, in chapter 4, the patented idea of parallel progressive hierarchical turbo codes (PPHTC) is evaluated over the LTE platform. A detailed description is given of the voice transmission bearer architecture over LTE, and its consequences are discussed. The new channel code is inserted and evaluated over this platform and its performances compared with the existent LTE transmission schemes. The voice quality results help concluding on the efficiency of the proposed solution in a real transmission scenario. However, even though the newly presented solution gives the best results, further system optimizations should be envisaged for obtaining better gains and exploit the parallel progressive hierarchical turbo codes potential. The dissertation concludes in chapter 5 and a short discussion is given on future research perspectivesEVRY-INT (912282302) / SudocSudocFranceF
    corecore