75 research outputs found

    Study of noise robustness of First Formant Bandwidth (F1BW) method

    Get PDF
    The performance of speech recognition application under adverse noisy condition often becomes the topic of researchers regardless of the language used. Applications that use vowel phonemes require high degree of Standard Malay vowel recognition capability.In Malaysia, researches in vowel recognition is still lacking especially in the usage of Malay vowels, independent speaker systems, recognition robustness and algorithm speed and accuracy. This paper presents a noise robustness study on an improved vowel feature extraction method called First Formant Bandwidth (F1BW) on three classifiers of Multinomial Logistic Regression (MLR), K-Nearest Neighbors (k-NN) and Linear Discriminant Analysis (LDA).Results show that LDA performs best in overall vowel classification compared to MLR and KNN in terms of robustness capability

    Enrichment of Oesophageal Speech: Voice Conversion with Duration-Matched Synthetic Speech as Target

    Get PDF
    Pathological speech such as Oesophageal Speech (OS) is difficult to understand due to the presence of undesired artefacts and lack of normal healthy speech characteristics. Modern speech technologies and machine learning enable us to transform pathological speech to improve intelligibility and quality. We have used a neural network based voice conversion method with the aim of improving the intelligibility and reducing the listening effort (LE) of four OS speakers of varying speaking proficiency. The novelty of this method is the use of synthetic speech matched in duration with the source OS as the target, instead of parallel aligned healthy speech. We evaluated the converted samples from this system using a collection of Automatic Speech Recognition systems (ASR), an objective intelligibility metric (STOI) and a subjective test. ASR evaluation shows that the proposed system had significantly better word recognition accuracy compared to unprocessed OS, and baseline systems which used aligned healthy speech as the target. There was an improvement of at least 15% on STOI scores indicating a higher intelligibility for the proposed system compared to unprocessed OS, and a higher target similarity in the proposed system compared to baseline systems. The subjective test reveals a significant preference for the proposed system compared to unprocessed OS for all OS speakers, except one who was the least proficient OS speaker in the data set.This project was supported by funding from the European Union’s H2020 research and innovation programme under the MSCA GA 675324 (the ENRICH network: www.enrich-etn.eu (accessed on 25 June 2021)), and the Basque Government (PIBA_2018_1_0035 and IT355-19)

    Enhancement of esophageal speech using voice conversion techniques

    Get PDF
    International audienceThis paper presents a novel approach for enhancing esophageal speech using voice conversion techniques. Esophageal speech (ES) is an alternative voice that allows a patient with no vocal cords to produce sounds after total laryngectomy: this voice has a poor degree of intelligibility and a poor quality. To address this issue, we propose a speaking-aid system enhancing ES in order to clarify and make it more natural. Given the specificity of ES, in this study we propose to apply a new voice conversion technique taking into account the particularity of the pathological vocal apparatus. We trained deep neural networks (DNNs) and Gaussian mixture models (GMMs) to predict " laryngeal " vocal tract features from esophageal speech. The converted vectors are then used to estimate the excitation cepstral coefficients and phase by a search in the target training space previously encoded as a binary tree. The voice resynthesized sounds like a laryngeal voice i.e., is more natural than the original ES, with an effective reconstruction of the prosodic information while retaining , and this is the highlight of our study, the characteristics of the vocal tract inherent to the source speaker. The results of voice conversion evaluated using objective and subjective experiments , validate the proposed approach

    Perceptual and acoustic impacts of aberrant properties of electrolaryngeal speech.

    Get PDF
    Thesis (Ph. D.)—Harvard-MIT Division of Health Sciences and Technology, 2003.Includes bibliographical references (p. 167-171).This electronic version was prepared by the author. The certified thesis is available in the Institute Archives and Special Collections.Ph. D

    Bilateral Waveform Similarity Overlap-and-Add Based Packet Loss Concealment for Voice over IP

    Get PDF
    This paper invested a bilateral waveform similarity overlap-and-add algorithm for voice packet lost. Since Packet lost will cause the semantic misunderstanding, it has become one of the most essential problems in speech communication. This investment is based on waveform similarity measure using overlap-and-Add algorithm and provides the bilateral information to enhance the speech signal reconstruction. Traditionally, it has been improved that waveform similarity overlap-and-add (WSOLA) technique is an effective algorithm to deal with packet loss concealment (PLC) for real-time time communication. WSOLA algorithm is widely applied to deal with the length adaptation and packet loss concealment of speech signal. Time scale modification of audio signal is one of the most essential research topics in data communication, especially in voice of IP (VoIP). Herein, the proposed the bilateral WSOLA (BWSOLA) that is derived from WSOLA. Instead of only exploitation one direction speech data, the proposed method will reconstruct the lost voice data according to the preceding and cascading data. The related algorithms have been developed to achieve the optimal reconstructing estimation. The experimental results show that the quality of the reconstructed speech signal of the bilateral WSOLA is much better compared to the standard WSOLA and GWSOLA on different packet loss rate and length using the metrics PESQ and MOS. The significant improvement is obtained by bilateral information and proposed method. The proposed bilateral waveform similarity overlap-and-add (BWSOLA) outperforms the traditional approaches especially in the long duration data loss

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference
    • …
    corecore